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NATIONALADVISORYCOMMITTEEFORAERONAUTICS

TECHNICALNOTE4276

ANAPPROXIMATEANALYTICALMETHODFORSTUDYINGENTRY

INTOPIANETARYATMOSPHERES

By DeanR. Chapman

SUMMARY

The pair of motion equations for entry into an exponential planetary
atmosphere is reduced to a single, ordinary, nonlinear differential equa-
tion of second order by disregarding two relatively small terms and by
introducing a certain mathematical transformation. The reduced equation
includes various terms, certain of which represent the gravity force, the
centrifugal acceleration, and the lift force. If these particular terms
are disregarded, the differential equation is linear and yields precisely
the solution of Allen and Eggers applicable to ballistic entry at rela-
tively steep angles of descent. If all the other terms in the basic
equation are disregarded (corresponding to negligible vertical accelera-
tion and negligible vertical componentof drag force), the resulting
truncated differential equation yields the solution of SKnger for equi-
librium flight of glide vehicles with relatively large lift-drag ratios.

A numberof solutions for lifting and nonlifting vehicles entering
at various initial angles also have been obtained from the complete non-
linear equation. These solutions are universal in the sense that a single

solution determines the motion and heating of a vehicle of arbitrary

weight, dimensions, and shape entering an arbitrary planetary atmosphere.

One solution is required for each lift-drag ratio. These solutions are

used to study the deceleration, heating rate, and total heat absorbed for

entry into Venus, Earth, Mars, and Jupiter. From the equations developed

for heating rates, and from available information on human tolerance

limits to acceleration stress, approximate conditions for minimizing the

aerodynamic heating of a trimmed vehicle with constant lift-drag ratio

are established for several types of manned entry. A brief study is

included of the process of atmosphere braking for slowing a vehicle from

near escape velocity to near satellite velocity.

INTRODUCTION

One of the many challenging problems connected with space flight

occurs during the terminal phase of operation when a vehicle at near

orbital velocity enters the earth's atmosphere or the atmosphere of

another planet. Some important aspects of this problem are the possibly
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severe decelerations for humanoccupants_ the intense aerodynamic heating,
and the tactical aspect of having satisfactory control over both the time
and location of landing. The problem is mademore interesting by inter-
relationships between these aspects which require_ as always, keen under-
standing in order to makethe best design compromises. For example, the
lowest heating rates and smallest decelerations are obtained with very
shallow entry paths_ such as would be obtained by letting an orbit
gradually decay_ but the tactical aspects of fixing the time and location
of a vehicle upon landing are most difficult with these very shallow
re-entries. Also, the total heat absorbed during descent is greater for
shallow entries than for steep ones. If descent at a steeper angle is
induced by deflecting the orbit, such as by meansof a retrorocket, then
the total heat absorbed for laminar flow is reduced substantially_ and
the time and location aspects of recovery are improved_ but both the
deceleration and the heating rate are increased. In order to devise an
efficient method of entry for a given application, it is highly desirable
that a designer have available relatively simple equations for computing
how each variable at his disposal affects the entry trajectory, the
deceleration_ and the aerodynamic heating.

For several special types of entry, analytical theories are available
which provide simple equations showing clearly how each variable affects
the motion and aerodynamic heating. In the case of ballistic-type entry
without lift at sufficiently steep angles that the gravity and centrifugal
forces can be disregarded, the analysis of Allen and Eggers (ref. i)
provides such equations. In the case of smoothly gliding-type entry at
zero initial angle with a sufficiently large lift-drag ratio that the
vertical acceleration and the vertical componentof drag force can be
disregarded, the analysis originally given by S_nger (refs. 2 and 3) would
be applicable. In the case of skipping vehicles entering at sufficiently
steep angles and with a sufficiently large lift-drag ratio that the
gravity and centrifugal forces can be disregarded, the analysis of Eggers,
Allen, and Neice (ref. 4) would apply. For more general types of entry,
though, where the gravity force_ centrifugal force_ lift force, vertical
acceleration_ and vertical componentof drag are all of importance, these
existing analyses would not apply. Such would be the case, for example_
for the entry of a satellite with a small lift-drag ratio, or for the
entry of any orbiting vehicle starting with a very small initial angle.
As a result_ present understanding of the relatively shallow entries -
which are of special interest to manned space flight - is based primarily

on numerical calculations made with computing machines in connection with

relatively specific vehicles (see, e.g., refs. 5, 6, and 7)-

The objective of the present report is to develop an approximate

analytical solution to the motion equations which is usable for engineer-

ing calculations and which is applicable to an arbitrary planetary atmos-

phere, to a lifting or nonlifting vehicle, and to entries along either

shallow or steep descents. Such a solution could be applied to a fairly

broad variety of vehicles, such as skip, glide, satellite, ballistic, or
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escape vehicles undergoing the process of atmospherebraking. An addi-
tional objective is to develop a method applicable to composite types of
entry, such as entering initially with zero lift, and then suddenly chang-
ing the lift and/or drag at any numberof points during the descent.

During the preparation of this report an interesting report by Gazley
(ref. 8) becameavailable in which he considers the entry of a nonlifting
satellite into a planetary atmosphere from a decaying orbit. He obtains
an approximate analytic solution by making an arbitrary assumption about
the relationship between velocity and angle of descent which is not made
in the present report. As a result, his end equations for this particular
type of entry are quantitatively different, though qualitatively similar
to those of the present report, as discussed briefly later.

NOTATION

a

A

C

CD

resultant deceleration

reference area for drag and lift, sq ft

dimensional constant in heat-transfer equations

(17,000 Btu ft-S/2sec-1 for numerical calculations of this report)

D

drag coefficient, i p_V2A

CL

D

g

gc

kl

k2

L

lift coefficient, i p"_A_v

drag force, ib

gravitational acceleration, ft sec -2

gravitational conversion constant, 32.2 ft sec -2

ratio of local heat flux to that at a stagnation point, i
qs

average value of heat flux relative to stagnation point value,

i ]_dSS qs

characteristic length of vehicle, ft
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L lift force, ib

m mass of vehicle, slugs

meanmolecular weight of planetary atmosphere (consistent units
with gas constant and g)

Pr Prandtl number

q convective heat-transfer rate per unit area, Btu/sq ft sec

Q total convective heat absorbed, l_q dt dS, Btu

dimensionless function proportional to heating rate (_s/2_ for
laminar flow)

dimensionless function proportional to total heat absorbed

_f_312Z" i' 2cos-2_ d_

r distance from planet center, ft

R universal gas constant, or radius of curvature of vehicle surface

in feet

pJ_
Re Reynolds number, --

s circumferential distance traveled, ft

S surface area wetted by boundary layer, sq ft

t time, sec

T temperature (various units employed)

u circumferential velocity component normal to radius vector, ft/sec

uc circular orbital velocity, _gr, ft/sec

-- U

u ratio, u--_

_i upper limit for range and total heat absorbed (see eqs. (28) and

(39b))

y altitude, ft
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V

V

W

Z

7

e

P

P

vertical velocity component (along direction of radius vector), ft/sec

resultant velocity, Ju 2 + v2

weight of vehicle at earth's surface, mgc, ib

dimensionless function of _ determined by equation (21) and

appropriate boundary conditions

atmospheric density decay parameter, ft -z

ratio of specific heats behind bow wave

angle in polar coordinates

coefficient of viscosity, slug ft'Zsec -z

density, slug ft "S

flight-path angle relative to local horizontal direction; positive

for climbing flight, negative for descent

Subscripts

0

oo

S

i

b

e

sea level

free stream

stagnation point

initial condition

W

break where C--_ is discontinuously changed

relative to earth

Superscripts

differentiation with respect to u

mean value for exponential approximation to atmosphere density-

altitude relationship, or dimensionless quantity
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.ANALYSIS

Assumptions and Approximations

The problem analyzed concerns that portion of the descent of a
vehicle into a planetary atmospherewherein the decelerations and the
convective aerodynamic heating are dominant. Three assumptions madeat
the outset are:

(.i)

(ii)

(iii)

Atmosphere and planet are spherically symmetric.

Atmosphere density p_ varies exponentially with altitude.

Peripheral velocity of planet is negligible compared to the

velocity of the entering vehicle.

Assumption (i) is reasonable for those planets which have only small

equatoris_l bulges (such as Venus, Earth, and Mars), inasmuch as the severe

aerodynamic heating and decelerations occur over a length of flight path

which is small compared to the planet's mean radius (the order of

one tenth the planet radius for nonlifting bodies). The assumption of

spherical symmetry, however, would not be as reasonable for planets with

relatively large equatorial bulges, such as Jupiter and Saturn. As noted

later, this assumption of spherical symmetry can introduce some inaccuracy

if the descent is nearly along a line of longitude and i£ the vehicle also

happens to have a relatively large lift-drag ratio. For large lift-drag

ratios the important deceleration and heating portions of the descent can

be prolonged over a distance comparable to the planet's radius; hence,

the nonspherical nature of the atmosphere could be important in such

cases.

Assumption (ii), of an exponential atmosphere, is based upon the

simple kinetic theory of an isothermal gas in a uniform gravitational

field. This theory yields the well-known exponential approximation for

atmospheres (see ref. 9, ch. III, for example)

Poo -_y_--= e (i)
Po

where

= .--=_ (2)
RT

and where M is the mean molecular weight of the planet's atmosphere,

the mean temperature, R the universal gas constant, and g the local

acceleration due to gravity. It is to be noted that _o represents the



Z
NACA TN 4276 7

intercept of the straight line which best fits a curve of log p versus

altitude, and is not the same as the true 'sea level density 2o. From

data such as presented in references i0 and ii, approximate mean values

of several quantities of interest for various planets are as follows

(the subscript • designates a value relative to the earth):

Planet

Venus

Earth

Mars

Jupiter

re ge

0.97 0.87

1.0 1.0

•53 .38

ii.0

Gases
_' oT_B -z ft_e gm mol -z

C02,_2 O.8 4o
N2,02 1.0 29

!N2,C02 1.0 30

2.63 iH2,CH4 .5 3

270i 2><104

!240 2.35Xi04

220 6X104

170 6xlO 4

1.0

1.0

.47

2.0

The exponential approximation for the earth (with To = 0.0027 slug ft -s)

is compared in figure i with the relatively recent (1956) ARDC model of

the atmosphere. It is evident that a single value for B appears to be

a reasonable approximation at altitudes below about 400,000 feet (80 miles,

roughly). In most cases peak decelerations and maximum aerodynamic heating

occur well below this altitude. Moreover, the region of most important

heating and deceleration for a given vehicle occurs only over a relatively

thin strip of altitude (very roughly over a 70,000-foot strip across which

the density changes by about a factor of 20). Since the analysis which

follows enables the altitude of this important strip to be calculated

quickly for any given vehicle, the exponential decay parameter _ in each

case could be selected, if desired, as corresponding to this particular

altitude rather than to the mean value tabulated above. A plot of the

d_mensionless parameter _-_ as a function of altitude is shown in fig-

ure 2 for the ARDC model atmosphere. In determining _ consideration

is given only to the 70,000-foot region of air immediately above a given

altitude. The fluctuations in _f_ for this standard atmosphere below

about 400,000 feet amount to the order of ±i0 percent from a mean value

of 30 and are attributed primarily to the variation in temperature with

altitude. Inasmuch as variations in temperature with season and with

latitude (see ref. 12, for example) can fluctuate the order of ±15 percent,

the parameter _~ _-i/2 can fluctuate about _7 percent. For most numer-

ical calculations in this report, a constant value _ = 30 is used for

the earth's atmosphere corresponding to a mean atmospheric temperature of
24o° K (432° R).

Assumption (iii), that the peripheral velocity of the planet is

negligible compared to the velocity of the entering vehicle, would not

introduce significant errors for most descents into most planetary atmos-

pheres. For descents nearly along a line of longitude, the errors in heat

transfer and deceleration would, of course, be negligible. The greatest

error would occur in an equatorial descent. As a measure of this error,
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we can take the ratio of the equatorial peripheral velocity Up of the
planet to the circular satellite velocity uc. This ratio for several
planets is as follows:

Up/Uc

Venus 10.002
Earth .06
Mars .07
Jupiter .29

Hencethe error introduced by assuming a nonrotating atmosphere in the
case of near-equatorial descents would be negligible for Venus, appreci-
able though not large for Earth and Mars, but probably significant for
Jupiter.

In addition to these three physical assumptions, two mathematical
approximations are madein the development of the subsequent analysis in
order to effect major simplifications in the structure of the equations
of motion. They are mentioned here for convenience:

(a) In a given increment of time, the fractional change in distance
from the planet center, dr/r, is small comparedto the fractional
change in velocity du/u; that is, Idr/rl<_ Idu/ul.

(b) For lifting vehicles, the flight-path angle q_ relative to the
local horizontal direction is sufficiently small that the component
of lift in the horizontal direction is sr_ll comparedto the drag;
that is, l(L/D)tan q_l_ i.

For nonlifting vehicles (e.g., ballistic entry), approximation (b)
is automatically satisfied; approximation (a) does not specifically
restrict the descent angle (0° to 90o can be analyzed for nonlifting
vehicles), but it does restrict the analysis to a portion of the over-all
trajectory below an upper altitude limit. Above somealtitude dr/r
cannot be small comparedto du/u, as is shownto be the case on mathe-
matical grounds in appendix A. Physically, this is clear from the law
of conservation of angular momentumwhich states that in the absence of
drag, d(mur) = 0, or dr/r = -du/u. Consequently, the present solution
would be reasonable at least below an altitude where drag has slowed down
a vehicle slightly to somepoint (A in sketch)_mere dr/r m 0.i du/u.
It is shownin appendix B that this corresponds to the point where drag
has reduced the vehicle velocity by about 0.01 of the initial velocity.
Above this altitude (point A), orbit-type calculations could be applied.
A method for Joining the present solution to Keplerian ellipses is
discussed in appendix B.

l_nis value maybe a factor of ten higher due to the uncertainty in
the length of the Venus day.
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For lifting vehicles (e.g., skip or gliding entry) assumption (b)

clearly restricts the analysis to small angles of descent. Even if a

lifting vehicle starts entry horizontally, the angle of descent will

increase as the velocity is reduced (and as the centrifugal forces are

diminished) until (L/D)tan _ becomes unity in the terminal subsonic

gliding phase. Although the solution is not valid, strictly speaking,

when (L/D)tanI_ I is comparable to unity, a reasonable over-all trajectory

would be obtained by stopping the present solution at the point where

-(L/D)tan _ = i (point B in above sketch), and considering that

-(L/D)tan q = i thereafter• As sketched, peak heating and maximum decel-

eration occur well within the range (solid line) where the present solu-

tion applies.

The limitations resulting from approximations (a) and (b) are

examined in appendix A, where it is shown that for vehicles entering from

decaying satellite orbits, with or without positive lift, the errors

introduced are only the order of a few percent insofar as aerodynamic

heating and peak decelerations are concerned. Surprisingly small errors

result from approximation (b), even for very large L/D ratios, because,

in orbital decay or in a smooth glide_ the larger the L/D the smaller

the angle _ at conditions near maximum heating and peak deceleration;
this keeps the product (L/D)tan @ small.

Various modes of entry and the portions of the trajectories of

satellite, ballistic, escape, glide, and skip vehicles to which the anal-

ysis applies are sketched in figure 3.
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Development of Differential Equation

Descent in a s_lerically symmetric atmosphereabout a spherically
symmetric planet would occur in a meridian plane in the absence of lateral
forces. This confines the problem to one of two dimensions for which
polar coordinates (r, e) are convenient. The velocity componentsare
(v, u), respectively, as sketched below.

D

ro

Flight path

The vector acceleration in terms of the unit vectors _r and _e for polar
coordinates is

a = er + + (3)

where er and _@ are the unit vectors in the r and e directions,

respectively. The local flight-path angle _ (negative for descent) is

tan m : l (4)
U

The vector aerodynamic force

f = (-mg + L cos _ - D sin @)_r - (D cos 9 + L sin q0)_ e (5)
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must equal the mass m times the vector acceleration in the absence of

thrust-type forces. Hence, equations (3), (4), and (5) yield two com-

ponent equations of motion

d _ay dv u2 L D
dt 2 = - d-_ = g r m cos _ + -m sin _ (6)

du + uv D <cos _ + L sin _)dt r m D
(7)

It is noted that g and r are local values in these equations.

We will solve this system of equations by disregarding the term

uv/r in equation (7) (which, as will be evident shortly, is equivalent

to assumption (a) that ]dr/rI<<Idu/ul). This restricts the solutions

to problems wherein fur/r I<< Idu/dtl, but the restriction is not serious

for the aerodynamic heating and deceleration aspects of entry. In the

case of orbital entry, for example, maximum deceleration and heating

occur at such small angles that uv/r is the order of i percent of du/dt

(see appendix A). An alternate view of what the approximation involves
can be seen as follows:

ul J
<< i (8)

Consequently, the disregard of uv/r is precisely equivalent to approx-

imation (a) mentioned earlier; namely, that the percentage change in

distance from the planet center is small compared to the percentage change

in velocity. We will employ this approximation several times more in the

analysis. Inasmuch as du/u is relatively large only when the drag is

important, it is understandable why the basic approximation Idr/rl<<Idu/ui
yields results applicable to regions of important deceleration and aero-

dynamic heating, but not to the outer regions of space where orbit-type

calculations (which do not neglect the acceleration term uv/r compared

to du/dt) are necessary to describe the motion of a vehicle. In these

outer regions, radiant heat dominates, while convective heating and
deceleration are very small.

By utilizing approximation (a) (inequality (8)), we have

<t,ld__u _D
cos (p + _ tan (9)

i

dt m
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so that, by introducing the drag coefficient, the exponential approximation
to the atmosphere, and approximation (b) (l(L/D)tan _I << i), and noting
that V = u/cos q0,

- -_y

d__u= Poe u2 (10)

dt 2 ( _ cos q_

We will select as an independent variable

u = u (il)
uc #'_

representing the ratio of horizontal velocity to the local circular

satellite velocity. The basic approximation (8) taken together with the

relation dg/g = -2dr/r resulting from Newton's gravitational law enables

us to disregard derivatives of both g and r relative to derivatives of

either u, or 7; for example,

du d( E)
- -- (12)

dt dt dt

By introduction of the drag coefficient, the motion equation (6) for an

exponential atmosphere becomes

CDAr_2e-_Y < L _)--2 TO sin q0 - -- cos (13)
_ i dv i day I - u + 2 m cos2_g dt = g dt 2 = -- D

In order to reduce the pair of motion equations (i0) and (13) to a

single equation, we transform to a new dimensionless dependent variable

Z defined by

Z " "Po _ Re "By (14)

and employ _ as the independent wlriable. 2 Thus, by differentiating

(Z' m dZ/d_) and keeping in mind the basic approximation (8)

2The author knows of no simple way to explain a priori why this coor-

dinate system Z(_) should be introduced. It was discovered by trial and
error after trying various other transformed coordinate systems which did
not reduce the pair of motion equations to a single equation.
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z' z _oJ _ -_y ay
e

-2 _DDA) d_
u 2 m

Z dy dt
- __

u dt d_
(15)

We see from equations (i0) and (12) that

d_ J_i _z (16)
dt cos

so that substitution into equation (15) and noting that

dy/dt = v = _ tan _ yields

Z _ cos q0dyZ' - : = __r sin q0 (17)
u "_ dt

Proceeding now by differentiation of v and sin _ from equation (17),
there results )

I dv ___t _ sin _ i d_ _Z" _ sin2_0 dq0_ (18)
m n = _ _COS -_g dt \ cos q0/ _ dt q0 cos2q0 _uJ

The term d_/d_ representing flight-path curvature can be expressed in

several ways in terms of the Z function by noting from equations (17)

and (12) that

= _r d sin
d_

Z
= {_Z" - Z' +-

u

= uZ" -_r sin

Alternate forms of

terms representing

flight-path curvature

(19)

Consequently_ we can substitute the first form of this equation, together

with equation (16) into equation (18) to obtain
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_ i dv = i d2y = _Z _0Z,, + tan2_ I_d (Z,- Z) I } (18a)g dt g dt 2 cos2q0 d_

We note from equations (14) and (17) that equation (13) can be written
in the form

d2Y i u + _ ' __ cos (20)
I dv i

g dt g dt 2 cos2qD u D

Hence, by comparing this equation with equation (18a), and by observing

from the second form of equation (19) that

Z'-Z = uZ"- u d (Z'o --d_ _ Z_

the final equation for the Z function is obtained.

__a az 1-_2 co_ + _r Du d_ _Z

In this equation, cos _ =_i - sin2_ can be expressed in terms of Z'

and Z through equation (17)

_r sin _ = Z' - --_ (17)
U

Thus, the pair of motion equations has been reduced to a single, second-

order differential equation by using _ as the independent variable and

Z as the dependent variable. 3 For nonlifting vehicles (L/D = 0) the

equation is applicable to large angles of descent as well as small. For

lifting vehicles it is applicable for i(L/D)tan _I<< i. In all cases it

is applicable when Idr/rl/Idu/uI<<l. We note from equations (4) and (16)

that

3Clearly, the same reduction would be achieved by using g(_) as the

independent variable and Zh(_) as the dependent variable, where g(_)

and h(_) are arbitrary functions.
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dr/r uv/r -_ sin q0
= _ = (22)

du/u du/dt _ Z

As noted in appendix A, the ratio Idr/rl/Idu/ul is less than O.l below

the altitude where drag has reduced the velocity by about i percent of the

initial velocity.

The nonlinearity of equation (21) is due to the term (i -_2)cos4_/_Z

which represents the effects of gravity and centrifugal forces in inducing

a curved flight path. It is noted that the basic equation is independent

of the physical characteristics CD, W, A of the vehicle as well as

independent of the sea-level characteristics To and go. Aerodynamic lift

occurs only in the combined parameter _ L/D. The equation has a singu-

larity at Z = 0 which must be handled analytically in numerical methods.

A method of solving this equation is discussed in appendix D.

It is instructive to consider the physical meaning of each of the

terms in the differential equation (21). Equations (19) and (20) help

in this regard.

_Z" -<Z'- _)

vertical vertical component

acceleration of drag force

(_-_ sin _3

i-_------_2cos4_ -_r _L cosSqo (21a)
_z D

v

gravity minus lift force

centrifugal force

By understanding the physical significance of the various terms one can

judge, for example, what terms to consider in obtaining special approxi-

mate solutions.

Since the basic differential equation is of second order, we need

two initial conditions to complete the system. We take these at some

initial velocity _i, and write as generalized initial conditions

z(_i) _ zi z'(_i) _ zi'

If the vehicle starts at a very high altitude where the density is negli-

gible compared to that near peak heating, then the definition (14)

_gcCD Azi : \-  ipi (24a)
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shows that Zi is very small in such cases. For simplicity we take

Zi = 0 for entries starting at very high altitudes. The equation

Zi
zi' =477 sin +=- (24b)

u i

shows that Zi' would be equal to _ sin _i when Zi = O. As an

example, entry from a decaying satellite orbit (_i _ 0 and _i = i in the

stage of decay before appreciable aerodynamic heating begins), would be

represented by the initial conditions

zi(z) = o zi,(z) = o (29)

One universal Z function would be required for each value of the

parameter _"_ L/D appearing in the differential equation (21).

By allowing Zi' to take on values other than zero and allowing [i

to be either less than or greater than unity, we can obtain the corre-

sponding Z functions for ballistic, glide, skip, or escape vehicles

entering a planetary atmosphere from very high altitudes. By further

allowing Zi to be other than zero, corresponding Z functions can be

obtained for entry starting from an initial altitude where the density

may not be negligible compared to that near peak heating. Before present-

ing some solutions to equation (21), though, it is advantageous to show

how the Z functions, once computed, can rapidly be used to determine a

number of useful quantities in practical calculations.

Summary of Some Useful Quantities Related to the Z Function

From the Z functions, it is a relatively simple matter to obtain,

for example, the horizontal component of deceleration a8 by using
equations (3), (12), and (16),

du
ae ---- = (26)

dt cos

or

i du _ 30 _Z
g dt

for Earth, _ small

Strictly speaking, g and r are local values in the outer layers of the

atmosphere where the deceleration takes place. For Earth, however_ these

are not significantly different from their respective surface-level

values. Local and surface values might be greatly different, though, for
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planets such as Jupiter and Saturn which are believed to have a very deep
atmosphere. The equation for the angle of descent (9<0 for descent) is,
from equation (17),

z, -
sin _ = (27)

z, -
m for Earth

3O

The circumferential distance traveled between a point where the dimension-

less velocity is ul and a point where it is ue can be expressed in

terms of Z from equation (16),

ZSs i f2 dt i _lr -r u _u d_ -I
cos _d_

(28)

Or

As. i f_idU
r 30 2 Z

for Earth, 9 small (29)

Inasmuch as the analysis is not valid in a very small neighborhood of

Z = 0 where u = _i, but becomes valid after drag has reduced u by less

than i percent (as shown in appendix B), we select an upper limit such as

[i = 0.995 [i or [i = 0.99 ui for the entry range. In a practical appli-

cation, this range would have to be joined to the range of the appropriate

Keplerian ellipse in order to obtain the total range. The corresponding

time elapsed is obtained also with the aid of equation (16)

f ds I _l cos _ d_t = -6- = _g nz
2

(3o)

i d_27.0 sec for Earth, _ small, g _ go

Another useful quantity is the density ratio, referred to the true sea-

level density (Po = 0.00238 slug ft-3), which comes from the defini-

tion (14) for Z
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Po Po u
(31a)

or

30 Poo = 3.7 _-_Z X 10 -5 for Earth, W

Po \CDA/ u CDA

in Ib ft-2

The left side of this last equation is a function only of the altitude

for a given atmosphere (_ for the _ model atmosphere is shown in

fig. 2), so that it provides for a given Z(u) function the altitude-

velocity relationship for any model atmosphere. The density ratio

referred to the effective sea-level density (To = 0.0027) which best fits

the p(y) curve is

e-_y Poo 2 __ Z= ----= _ = (31b)
Po Po u

= 3.2 (_DA) z
= × 10 .5
U

W

for Earth, C--_
in ib ft -2, _ = 30

The dynamic pressure is

i mg

(32)
COS2_

W
for Earth, --

CDA
in ib ft -2, _ small

and the free-stream Reynolds number per unit length is proportional to

Z (eq. 14))

Re_ Vp_ 2_gB _
= Z (33)

Z _ _cos q_ \CoA/

7100_DA_Z

W
for earth, _ small,

UDa

in ib ft -2
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The viscosity of air at the meanatmospheric temperature _ = 432o R is
employed to obtain the constant in this last equation which is valid only
for the earth's atmosphere.

It is interesting that the Reynolds numbers involved during entry
from a decaying satellite orbit are relatively small. Near peak heating,
for example, we will see subsequently that the value of Z ranges from
about 0.17 to 0.015, for L/D ratios between 0 and i, so the correspond-
ing Reynolds numbersare of the order of IO00(W/CDA) to IO0(W/CDA) per
foot. These are sufficiently small for one to be optimistic about the
practical possibilities of maintaining laminar flow for shallow entry
from a satellite orbit. For steep entries, as for ballistic vehicles 3
the Z function is larger, and hence the corresponding Reynolds numbers
are larger. Curves illustrating this are presented later.

Fairly simple expressions also can be obtained for the aerodynamic
heating rate per unit area (q) and the total heat absorbed per unit area
Q/S. Following the analysis of Lees (ref. 13), we will consider the
heating rate at any point on a body to be a certain fraction

--q (34)
kl -- qs

of the heating rate qs at a stagnation point of radius of curvature

The heating rate in hypersonic flow at a stagnation point, can be

expressed as

RQ

mj
Btu ft-esec -l (35)

where the constants C, n, and m depend on the type of boundary-layer

flow. For laminar flow we have n = 1/2 and from the several references

listed (with Po being the true sea-level density)

Reference C m Remarks

14

13,7

15

16,800 3.1 Intermediate enthalpy theory

19,800 3.22 Theory of Lees

17,600 3.15 Correlation of AVCO shock-

tube experimental results

We will base all our numerical calculations on laminar flow (n = 1/2),

and will use the value m = 3 for purposes of simplicity (this corre-

sponds to a gas with viscosity proportional to TI/2), and the value

C = 17,000 Btu ft-3/2sec -I which is adjusted to match a mean of the

above results for air at velocities near peak heating (u _ 0.8). For

gases other than air we use the theory of Lees (ref. 13) to obtain for

hypersonic flow C ~ p_o_ouc3pr-2/3[(_ - i)/_]i/4 In subsequent calcu-

lations, differences in the Prandtl number and in the ratio of specific

heats for various planets are disregarded.
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Proceeding from equations (35), (34), and (31) with n : i/2, m = 3,
and C = 17,000, the laminar convective heat-transfer rate can be written
in terms of the Z function and the relative planetary constants
(ge = g/gearth, _ = _/_earth, etc.) as

_Pr 4_I C_RI _ Btu
q = kzq s = 590 -alSkoZlegSl2rSl4_Zl k I

_®_ cosS_ ft2sec

(36)
where q _ E512Z I/2. (If the flow were turbulent q ~ _2"2Z°'S, approxi-

mately, and we would have different powers appearing in equation (36).)

It is noted that the different variables affect the heat flux in a form

represented by a series of factors; the expression in curly braces rep-

resents the effect on heat flux of the particular planetary atmosphere,

the expression in brackets represents the effect of the physical charac-

teristics of the vehicle, that is, the mass, dimensions and shape of the

vehicle, and the dimensionless function q = GSI2z I12 represents the

effect of the particular type of trajectory as determined by the lift-

drag ratio.

Whereas equation (36) for heating rate would be useful in studying

vehicles designed to operate at radiation equilibrium temperatures, an

equation for the total heat absorbed during entry is of more interest for

heat-sink type vehicles.

Q =//q dt dS = kaS/qsdt (37)

where

k 2 = _- kids = _ dS (38)

is the factor which takes into account the variations in heat flux over

the whole surface S wetted by the boundary layer. (For a hemisphere,

for example, ke _ 0.5.) Combining equations (37), (36), and (30) yields

the following equation for the heat absorbed between ul and u

fpr'21S_° llagrS /!}e [ C_ ]Q = 9o0 l[ 7 k2s (39a)

where

(39b)
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Heat radiation from the surface is not considered in these equations.

They are useful in studying vehicles incorporating heat sinks or ablation

cooling under conditions when the heat radiated away is small compared to

the heat absorbed; Q = f_T(cm)sin k (where c is the effective specific

heat of the sink material) is proportional to the heat-sink weight. We

note here that the particular planetary atmosphere (g, r, _) and espe-

cially the particular trajectory Z(_, L/D) affect the heating rate q

in a different fashion than the total heat absorbed Q. Examples

illustrating this are presented later.

Some Approximate Analytical Z Functions

Obtained From Truncated Basic Equation

By disregarding three different combinations of terms in the basic

differential equation (21), three special solutions are obtained which

yield results identical to previous approximate solutions. The details

are described in appendix C and lead to the following approximate

solutions:

Solution Vehicle

Z I = _-r(sin _)_ Zn _---
u i

ZII =

ZII I =_ +_ _0iZn -- _

Ballistic

Glide

Skip

Terms disregarded

(see eq. (21a))

Gravity, centrifugal

and lift forces; (40)

= _ = constant

Vertical acceleration

and vertical component (41)

of drag force; cos _ m i

Gravity and centrifugal

forces; cos _ _ I (42)

The ZI function provides an approximate solution for the motion and

heating identical to the solution of Allen and Eggers (ref. i) for balli-

stic entry. The ZII function corresponds to equilibrium gliding flight

originally discussed by S_nger (ref. 2). The corresponding aerodynamic

heating problems for this type of hypersonic flight have been discussed

by Eggers, Allen, and Neice (ref. 4) who also obtained a solution equiva-

lent to the ZII I function for skip vehicles. As will be apparent later,

the Z I function for ballistic vehicles is quite accurate for angles of

descent greater than several degrees _l_il >2 approximately) and the

ZII function for hypersonic __ide vehicles is quite accurate for L/D

ratios greater than about i (_ L/D>30 approximately) provided _i _ 0.
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The accuracy of the ZII I function for skip vehicles_ however_ depends
on both L/D and the initial angle _i- The conditions for applicability
can be determined from an approximate solution which considers both the
gravity and centrifugal forces that were neglected in obtaining ZII I.
In appendix C the following approximate solution is developed for satel-
lite entry (_i = i, Zi = O) at small initial angles @i:

2_r_il(L/D) ] ZnS_} (43)

By comparing with ZIII_ we see that the gravity and centrifugal forces
can be disregarded provided 2_rl_i(L/D)l>>l. An interesting feature
deduced from ZIV in appendix C is that the total heat absorbed in the
first skip (which is perhaps the most important) is essentially independent
of both the initial angle _i and the velocity of exit from the skip.
The heat absorbed varies as i/_ and hence is a minimumfor entry at
CLmax(see appendix C). For flat plates in Newtonian flow this corre-
sponds to an optimum L/D of 0.7.

Some Z Functions Obtained FromFull Equation

Entry from a decaying orbit for various L/D (_i = i, _i = O).- We

turn now from _he special solutions obtained by truncating the f_ll equa-

tion (21), to some solutions of the complete nonlinear equation applicable

to vehicles entering from a decaying satellite orbit. As the apogee of an

elliptical orbit is slowly reduced by drag (primarily exerted near the

perigee), the orbit eventually becomes a near circle and then begins a

gradually decaying spiral; hence, the initial angle @i for this type of

entry is taken as zero, and the initial velocity _i = i. The peak heat-

ing and the maximum deceleration occur at such small angles that

cos _ _ i. The differential equation (21) is then

u-- + J' 7 L = o (44)
d_ _Z D

and the corresponding boundary conditions for decaying orbits are

z(1) = o z,(1)= o

This system need be solved only once for each value of the parameter

_@-_(L/D), and the results are then applicable to any planet and to any

vehicle with arbitrary shape, size, or mass. In particular, the universal

Z function for L/D = 0 is presented in figure 4(a) (_Z is plotted since

this product stays within smiler bounds than Z). Solutions of equa-

tion (44) also have been carried out for various values of wrY(L/D). The
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numerical method employed is described in appendix D. Curves of the

Z functions and related quantities are presented in figure 4(b) for

values of _-r(L/D) corresponding for earth to L/D = 0.I, 0.25, 0.5,

and i. They are plotted in coordinates especially suited for comparison

with the ZII function of equation (41) representing Singer's concept

of an equilibrium hypersonic glide. Values are not shown for L/D > i

since ZII can be used in the velocity range of interest for these cases.

This is evident from the various curves in figure 4(b). The dashed curve

represents ZII which is the exact solution for L/D : _. From the Z

functions the various quantities of engineering interest, such as the

deceleration, descent angle, range, time, density-velocity relationship,

dynamic pressure, Reynolds number, heating rate, and total heat absorbed

can be computed from equations (26) to (39) presented earlier.

Nonlifting entry with initial angle of descent ([i = i, 9i < 0).-

We now consider entry when the initial descent angle is not negligible,

as it is in the case of a decaying orbit, but is some finite value _i-

Entry with an initial angle occurs in the case of a ballistic vehicle,

or a satellite to which a retrorocket has been applied to divert the orbit

into one which will induce the entry process. The differential equa-

tion (21) for nomlifting bodies is applicable for large as well as small

angles of descent.

d d(b uZ-_) i - u-_ cos49 = 0 (46)_-_ _z

The initial conditions are

Z([i) : 0 Z'([i) =_ sin _i (47)

In this case we have a double parameter family of solutions (_i and

_--r sin _ ). Actually, we need solutions to the nonlinear equation (46)

only for quite small initial angles inasmuch as the Allen-Eggers solution

(eq. (40)) is applicable for moderate and large angles. This may be seen

from figure 5 which presents example Z functions corresponding to the

nonlinear equation for various -_i up to 20 ° with u i = 0.9 (23,400 fps,

for earth). Since the ordinate is Z/_(-sin _i), the Allen-Eggers

solution is represented by the ordinate function _ Zn(_i/_ ) on this plot.

It is evident that their solution, which neglects gravity and centrifugal

forces, is quite accurate near peak heating (_ _ 0.7) for descent angles

greater than about 5° . Near maximum deceleration (_ m 0.4) the descent

angle has to be somewhat larger for comparable accuracy. It is clear

that, as far as peak heating and maximum deceleration are concerned, a

family of solutions to the nonlinear equation need only be computed for

small initial angles.

The Z functions for small initial angles and for the case of

satellite entry (_i = i) are of special practical interest. These are

presented in figure 6(a) for various values of _i such that in the
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earth's atmosphere -q0i = i°, 2° , 3°, 4° , and 6 ° . Rather than to plot

Z itself, the quantity 30 _Z is plotted which represents for the earth

the horizontal deceleration in g's. Tabulated values are presented in

table I for -Mi = 0°, 0.5o3 l°3 2°3 3° , and 4° . It is noted that these

values tabulated are solutions to equation (46) with the cos_ _ term

included, and hence are applicable to terminal conditions of small

(say less than 0.I) where M is large as well as to conditions near peak

heating and maximum deceleration where M is small. The tables of Z

apply to any planet for the same initial value of _i. The supple-

mentary tables of -_earth, (_s/r)earth, and teart h can be applied to

other planets over the range where _ is small by regarding the tabu-

lated values as representing -(_/30)_, (_Q-_/30)(f_s/r), and 27_ t,

respectively (see eqs. (27), (28), and (30)).

Entry with initial angle of descent for various L/D (_i = i, _i < 0).-

If we now consider a vehicle with lift, we must restrict our considerations

to small initial angles of descent -Mi and to the portion of trajectory

over which -@ remains sufficiently small that (L/D) Itan _I<<i (assump-

tion (b)). The basic differential equation (21), with cos _ = i, becomes

the same as equation (44), and the initial conditions are now

z(1)= o z,(1)= (48)

Solutions to equation (44) with these initial conditions have been obtained

for various values of _ qDi and for various values of the parameter

In figure 6 some curves representing Z functions are presented

as a function of -_i for earth. The various portions of this figure

correspond to L/D for earth of 0.25, 0.5, 0.7, and i. It is evident

from these figures, as might be expected 3 that small values of L/D and

-_i do not result in any significant skipping, but once the L/D is

increased beyond a certain amount, or the initial descent angle is greater

than a certain value, then numerous skips of sizable intensity occur

during the entry trajectory. Information on the heating rates, total heat

absorbed, and horizontal range during entry, has been obtained from these

Z functions and is discussed later. The Z functions in figure 6

could be applied to any planet by noting that _i for earth is equivalent

to a value (_r)e 1/2 times as great on another planet, and that a given

(L/D) for earth is equivalent to a value (_r)g_ 2 times as great.

Atmosphere braking for various L/D (_i > i, Mi < 0).- In entering

the atmosphere of a planet from space, the approach velocity can be com-

parable to escape velocity (_i =_). It is uneconomical in weight to

use chemical rockets for reducing the approach velocity in outer space,

and it is possibly uneconomical in time to use a low-thrust space engine.

Hence there is considerable interest in the braking process of making

successive passes through an atmosphere in order to reduce stepwise the

velocity and the eccentricity of 8_ orbit to near circular conditions

(_i _ 1).
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In analyzing the atmosphere braking process, cos _ can safely be

replaced by unity, so the basic differential equation (21) becomes once

again the same as equation (44), but the initial conditions are now

z( i): o :

where _i > i. By arbitrarily selecting various values for the angle of

entry _i, various solutions are obtained corresponding to single passes

through the atmosphere at various altitudes from the surface. It might

be more convenient in describing a single pass to select as the arbitrary

parameter the velocity _ex at the exit of the pass, or 30(_]max, which,

for the earth, would be the maximum deceleration in g's experienced during

this pass, and would be independent of W/CD A.

In figure 7, four Z functions are presented for nonlifting vehicles

which start the braking process with essentially escape velocity (_i = 1.4)

but with different values of maximum deceleration in the first pass. The

short-dash curve (a) corresponds to a maximum deceleration in the first

pass of 30(_Z)ma x = 0.46. It is seen that, starting with this initial

pass (and with no further control exercised on the vehicle) six passes

would occur before the seventh pass completed the entry process. The

long-dash curve (b) in figure 7 corresponds to 30(_)max = 1.65 for the

first pass. In this case only two passes occur before the third pass

completes the entry. The other two curves (c) and (d) in figure 7 corre-

spond to conditions wherein the first pass is the only one, inasmuch as

it is made sufficiently close to the planet surface to complete entry

without ever emerging from the atmosphere.

In computing the Z function for a successive pass, the initial

angle was assumed to be the same as the exit angle of the previous pass.

The exit angle was taken at the point where dr/r = du/u. Further dis-

cussion of these Z functions, and the results of other such functions

computed for atmosphere braking are presented later.

RESULTS AND DISCUSSION

From the various Z functions presented, it is relatively easy to

study the influence on entry motion of several variables of practical

interest. For example, we could study the effect of lift-drag ratio on

deceleration and aerodynamic heating, or the effect of a small error in

initial angle of descent on the range over which the re-entry process

takes place. Before considering such topics, however, it is desirable

to discuss two preliminary items. First, we compare some results from

the present approximate analysis for an exponential atmosphere with more

exact machine calculations for a standard atmosphere. This serves to

provide a feeling for the accuracy of the present analysis, and also to

show how any of the subsequent results readily can be corrected, if
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desired, for atmospheric temperature variations. Second, we discuss the
relative deceleration and aerodynamic heating of various planetary atmos-
pheres. This provides multiplication factors which enable any of the
subsequent results for the earth's atmosphere to be quickly converted to
results for other planetary atmospheres.

Comparison of Present Analysis With Other Calculations

An insight into the approximate accuracy to be expected from the
present analysis can be obtained by comparisomwith machine calculations
of the pair of motion equations for specific vehicles. Differences
between the present analysis and more exact calculations can arise
inasmuch as the present analysis makescertain assumptions about the
trajectory (that is_Idr/rl<<Idu/ul and I(L/D)tan _I << l) and about the
atmosphere (p_ ~ e-_Y) which need not be madein numerical machine cal-
culations. The a posteriori check of the trajectory assumptions_ as
presented in appendix A, showsthat insofar as convective heating and
peak decelerations are concerned_ only a few percent difference should
be expected for vehicles entering from a satellite orbit. A check of the
assumption of an exponential atmosphere can be obtained by comparing with
numerical calculations for somestandard atmosphere. In figure 8 a com-
parison is madeof the present analysis with numerical calculations from
the pair of motion equations using the ARDCmodel atmosphere. These
numerical calculations were madeby M. W. Rubesin and G. Goodwinusing
equations equivalent to (6) and (7) without discarding any terms. The
curves in figure 8(a) showclose agreement of both the altitude and the
descent angle as a function of velocity. The curves in figure 8(b) show
similar agreement of the circumferential distance traveled (AsZr), and of
the maximumdeceleration (within 6 percent). This small difference in
maximumdeceleration is believed due primarily to the departure of the
ARDCatmosphere in certain altitude regions from the idealized exponential
atmosphere of constant _ (1/23,500 ft-1).

As noted earlier, the present analytical method can readily be
applied using semilocal values of _ if it is desired to makecorrec-
tions to the results in order that they more closely represent some
standard atmosphere. Corrections also can be madeto allow for atmos-
pheric seasonal variations, or for variations with the earth's latitude.
In this sense, analytical results for an exponential atmosphereare actu-
ally more general for global application than numerical results for any
single standard atmosphere. This can be seen from the results which
follow. Let us consider the maximumdeceleration for entry from a
decaying orbit. This occurs at a velocity near _ = 0.43 at which point
Z _ 0.64 (fig. 4(a)). The approximate altitude at which maximumdeceler-
ation occurs is obtained by substitutin_ either into equation (31a) to
yield (P_/P°)max_du/dt = 5"5(W/CDA)XIO-' or into equation (31b) to yield
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Ymax du/dt = 23,500 <9.96- Zn _-_)
ft (49)

and is seen to depend on W/CD A. Since _ for the ARDC model atmos-

phere depends weakly on altitude, as shown in figure 2, the maximum decel-

eration _(_Z)max = 0.278_ in a standard atmosphere also will

depend weakly on altitude, and hence weakly on W/CD A. The resulting

values of -amax/g are shown by the solid curve in figure 9, for (W/CDA)

values ranging from 0.01 to i000 ib/ft. They agree very well with the

points shown which represent numerical integrations (Rubesin-Goodwin) of

the complete equations for the _ model atmosphere.

If desired, similar corrections for atmospheric variations also

could be made to other quantities computed for a mean value _ = 30.

Thus, the distance traveled varies as (Br) -l_ (eq. (28)), and the con-

vective heating rate varies as (_r) I14 (eq.(36)). It is noted that the

fluctuations in _ with altitude, as plotted in figure 2 correspond

very closely to the fluctuations in _-i/e, as should be expected, since

= Mg/R_. Hence any variations in mean atmospheric temperature, such as

seasonal variations or longitudinal variations, can just as readily be

corrected for as variations with altitude.

Gazley (ref. 8) has developed an approximate theory for the case of

orbital decay with L/D = 0 by assuming [_ is constant. This arbitrary

restriction yields results for orbital decay without lift that are quali-

tatively similar to the present analysis, but quantitatively dissimilar.

For ex_uple, the density-velocity relationship near peak heating ([ m 0.8)

differs by a factor of roughly 2. For higher velocities the discrepancy

rapidly increases, and for lower velocities it decreases. The peak decel-

eration occurs at lower velocities and is not greatly affected by Gazley's

assumption. For the earth (_ = 30) he obtains a maximum of 9.6 g at

= 0.54, whereas the present analysis, _lich does not make any assumptions

about the u(Q) relationship, yields 8.3 g at [ = 0.43.

Relative Deceleration, Heating, and Reynolds Numbers

For Entry Into Various Planetary Atmospheres

For a given size and shape of vehicle the deceleration, laminar

heating rate, total heat absorbed, and Reynolds number vary, according

to equations (26), (36), (39), and (33), respectively, as

a~g_Z

q ~ pr-2 13_ol12g312rS14_l14Zl/2

Q ~ pr-2/S_ol/2gr5 14_-i/4z-i/2

Re ~ gl/e_i/2_o-1Z

(50)
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In the case of nonlifting entry from a decaying orbit (zero initial angle

of descent), the characteristics of the planetary atmosphere (_'_) do not

enter the differential equation or the initial conditions (Zi = 0,

Zi' = 0); hence Z can be disregarded in computing the relative values

of the above quantities for various planets. In the more _eneral case of
entry from high altitude (Zi = 0) with fixed values of _r _i andS(L/D),

the Z function still would be the same for all planets. Neglecting dif-

ferences in Prandtl number and ratio of specific heats, we have for several

planets the following relative values applicable to nonlifting entry from

decaying orbits, or to any other type of entry where the values of _ _i

and_f_(L/D) are fixed:

Venus

Earth

Mars

Jupiter

(au/at)®
relative

deceler-

ation±

o.9
i .00

.2

5.

%
relative

heating rate,

(_oZ'2gS_2rS/4_1 _)e

O.7
1.00

•09

50.

%
relative total

heat absorbed,

(_o I/egrS /4_- i/4)

Re e

relative

Reynolds

number,

(gZ/e_z 12_o-Z)e

0.8 i.
1.O0 1. O0

.2 .4

5o. 2.

it is to be remembered that, in the case of a vehicle with lift, in order

to have the same Z function, a given L/D ratio on earth is equivalent

an L/D ratio (_r)e-i/2 times as great on a planet other than earth,to

and that a given _i on earth also is equivalent to a _i value

(_r)e -z12 times as great on another planet. This equivalence, together

with the above table, enables any result for earth to be converted to a

result for each of the other planets.

In the special case of entry at a constant angle _i, the atmospheric

characteristics enter the initial conditions on Z (Zi' =_ sin _i).

Since equation (40) shows that Z ~_ for this type of re-entry, we

include this in the expressions (50) to obtain the following relative

values applicable only to ballistic entry (L/D = O) at constant 9:

Venus

Earth

Mars

Jupiter

(d /dt)e
relative

deceler-

ation,

(g_r)®

o.9
i .00

.09

ii.

q¢
relative

heating rate,

(_oI/2g3/2rS/2_1/2)e

O.7
i .00

.06
70.

relative

total heat

absorbed,

(IJo1 legr) e

0.7
i .00

.2

20.

Ree

relative

Reynolds number,

(gl/2_rll2_o- l) ®

o

i .00

.2

4.
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These relative values for ballistic entry are exactly the same, of course,

as would be obtained directly from the theory of reference i and are

applicable for initial angles greater than about 5° . The previous table

would apply for _i = 0°- For nonlifting entry with _i the order of a few

degrees, the relative values for various planets would be intermediate to

the above two tables.

We see that entry into the atmosphere of Venus involves only slightly

less deceleration and heating than does entry into the earth's atmosphere,

whereas entry into Mars involves much less deceleration and heating, and

entry into Jupiter, much more. The Reynolds numbers, however, are not as

greatly different for the various planets.

Effect of Lift on Deceleration, Heating Rate, and Total Heat

Absorbed During Entry From Decaying Orbits

From the relative values of deceleration and heating for various

planets, together with the Z functions already presented, certain

quantities of practical interest readily can be computed. The remainder

of this report concerns such application of the Z functions for the

various types of entry. In the present section we discuss first lifting

entry from decaying orbits (_i = i, _i = 0).

Deceleration.- A plot of the horizontal deceleration du/dt in g's

for the earth's atmosphere (equal to 30 _Z) is presented in figure i0 as

a function of the dimensionless velocity _ for various lift-drag ratios.

The powerful effect of L/D ratios the order of only a few tenths is

evident from this figure. It is also evident that the maximum decelera-

tion occurs near a velocity of O _ 0.4. These curves are independent of

the shape, size, and mass of the vehicle. The resultant deceleration is

taken as a = J(du/dt) 2 + [(dv/dt) (u2/r) + g]2. For no motion this

expression reduces to g_ the gravitational constant of the planet. By

substituting equations (16) and (20) we have

a

g
_Z i+ an_ -
cos

(51)

which, for small angles (I_I << L/D, cos _ _ i, tane_ << i) yields

<g)max _ _'_(fLZ)max_/1 + (L/D) 2

A plot of this approximation for the maximum resultant deceleration is

shown in figure Ii for the several planets considered. Once again the

strong influence of the L/D ratio near L/D = 0 is evident. Also
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evident are the relatively low decelerations for Mars comparedto earth
and Venus, and the relatively high values for Jupiter.

From the viewpoint of humantolerance to acceleration stress, it is
not only the peak deceleration which must be considered, but also the
orientation of the body, the duration of stress, and the rate of onset of
deceleration. Numerousexperiments with the humancentrifuge have shown
that humantolerance is greatest in transverse orientation; that is, with
either chest-to-back or back-to-chest loading. Centrifuge experiments
(see, e.g., ref. 16 and the references quoted therein) also have shown
that the magnitude of acceleration is relatively more important than the
duration, in the sense that if the acceleration is increased i0 percent,
the tolerable duration is decreased by a factor of about 2. Thus, a
method believed to be conservative for calculating the effective duration
_t during entry is to assumethat the maximumdeceleration acts over the
entire time it would take for this deceleration to slow the vehicle from
orbital velocity to rest. Curves of maximumdeceleration versus duration
computedin this manner are presented in figure 12 for various planetary
atmospheres and for various L/D ratios. Included in this figure is a
boundary representing humantolerance in the transverse orientation for
conditions of rapid onset of acceleration (ref. 16 and references quoted
therein). This boundary also is conservative inasmuchas entry decelera-
tions are built up relatively slowly under which conditions, according to
the centrifuge experiments of reference 17, the body circulation builds
up a reflex action of effectiveness comparable to that provided by a
G-suit. The conservative limits determined from this figure are indicated
in figure ii. It is evident from both figures ii and 12 that the deceler-
ations for orbital entry into the earth ts atmosphereare well within h_man
tolerance even for nonlifting bodies. For Mars, humantolerance is suf-
ficient to permit entry at sizable angles of descent or with negative
lifting devices. Mannedentry into Jupiter, however, would require a
positive lifting body, or someother device in order to maintain the
decelerations within humantolerance.

Heating rate.- In examining the effect of lift on convection aero-

dynamic heating of entering vehicles_ we can use the same Z functions

as employed in studying the decelerations. We note first that for many

vehicles, the values of Reynolds number near peak heating are sufficiently

low that one would expect a considerable extent of laminar flow, yet suf-

ficiently high to be in continuum-gas flow rather than free-molecule flow.

A plot of Re/Z at peak heating is presented in figure 13 as a function

of W/CDA for entry from orbital decay into the earth's atmosphere. A

vehicle on a large parachute would correspond to W/CD A the order of

0.i ib/ft 2, and, with L/D = 0, to Re of about i02 ft -I. For such con-

ditions the peak heating, which occurs at a Mach number M_ _ 20, would

be near the slip-flow regime (Re/M_ m i). A reasonably blunt metallic

structure would correspond to W/CDA values the order of !0 to i00 ib/ft 2,

and to values of Re/Z the order of 103 to 105 . Such values are well

within the continuum regime, yet low enough to be associated with laminar
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flow• The curves in figure 13 are for earth but can be applied to other

planets by multiplying the ordinate by the value of the relative Reynolds

number already tabulated for several planets.

For a given atmosphere the imninar heating rate is proportional to

A plot of the dimensicnless heating rate _ as a function of [ is

presented in figure IL for entry from decaying orbits. The maximum value

occurs at a velocity _ of about 0°3 and is a function only of the param-
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For L/D ratios grester than i the asymptotic solution ZIi :
(i - [2

can be used to yi_id q--max:

3 J3, (n/n)
as noted in appendix C.

We will consider that the vehicle dimensions and weight (R, A, and W)

are fixed, and will study the influence of vehicle shape (CD and L/D).

Under these conditions the maximum heating rate is proportional to

_max/_ . _le ef['ect of lift-drag ratio on maximum heating rate (which

occurs at a [ of roughly 0.8) is illustrated in figure 15 for entry

from decaying orbits. The quantities plotted have been normalized to

unity for L/D = O, and can be applied directly to any planet, as can th,

curves in figure 14, by recalling that a given L/D for Earth is equiw_-

lent to a value (Sr)e I/2 times as much for _ planet other than Earth• I/

the L/D ratio could be increased indefinitely without changing the drag

coefficient such as by using reaction lift, then the maximum laminar heat-

ing rate would be proportional to the dotted line in figure 15 represent-

ing _max and would decrease indefinitely with an increase in L/D
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(asymptotically as (L/D) -z/2 for L/D greater than about 0.5). Physically
this decrease arises because the greater the lift, the less rapid the vehi-
cle descends, so that the heating occurs at higher altitudes where the
density is lower. On a practical device which uses aerodynamic lift, how-
ever, the L/D ratio cannot be increased muchwithout making the vehicle
more slender and decreasing CD; a decrease in CD increases the heating
rate (~ i /_) because it results in less slowing down, thereby causing

the peak heating to occur at lower altitudes where the density is higher.

As a result, there is an optimum L/D ratio for minimizing the heating

rate which_ for the three families of shapes indicated in figure 15_ is

near the range of L/D between about 0.5 and i. For the family of half-

cones and half-paraboloids, the L/D ratio was changed by changing the

fineness ratio while maintaining the flat tops parallel to the stream

direction. For the family of flat plates the L/D ratio was changed by

changing the angle of attack. In all cases, CD and L/D were computed for

Newtonian flow. The optimum L/D ratio is seen to depend somewhat on the

particular aerodynamic shape_ since L/D and CD are coupled somewhat dif-

ferently for different shapes. It is evident that the net benefit to be

gained by using aerodynamic lift amounts to about a factor of 2 in reduc-

ing the maximum rate of aerodynamic heating at a stagnation point.

Inasmuch as the optimum L/D ratios for minimizing the maximum heat-

ing rate are greater than about 0.5, they are in the range where the ZII
function for orbital decay is a good approximation near peak heating (see

fig. 4(b)). From equations (36) and (kl) we see that for a given planet

and given radius at a stagnation point,

jw- j-s/2 . 1-G s

-- u

since L/D = CL/CD,

%ax ~ (54)

and we see that the various minima in figure 15 each correspond to enter-

ing at CLmax. The peak heating always occurs at a dimensionless velocity

=_/_ = 0.82. For flat plates in Newtonian flow CLmax = 0.77 at an a

angle of attack of 55°_ for which L/D = 0.71. As noted in appendix C,

these conditions also turn out to represent optimum ones for minimizing

the total heat absorbed for skipping-type entry, because in this case also

and _ vary as (L/D) -I/s.

Surface temperature for radiation equilibrium.- The stagnation sur-

face temperature experienced during entry of a structure having relatively

small heat capacity (e.g., a thin skin) is calculated by equating the
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radiation heating rate to the convective heating rate. For entry from
decaying orbits we may set cos _ = i, inasmuchas _ near peak heating
varies from -2.6 ° to -0.2 ° as L/D varies from 0 to i. Wehave

eO_fWs4 = qs = 590_C7[ Btu ft-2sec -I (55)

where e is the surface radiative emissivity, R the radius of curvature,
and o = 0.48×i0 -12 Btu ft-2sec -I °R-4 is the Stefan-Boltzmann constant.

By substituting the value of gc for Earth there results (for Tw in °R,

R in ft, W/CDA in ib ft-2),

/ \1/8

Tw s = 3840 [i /4 (56 )

where _ for laminar flow is equal to _5/2ZI/2 The maximum value

_max I/4 is listed in the preceding table for entry from decaying orbits.

Other types of entry would require the use of other Z functions, but

equation (56) would remain unchanged. For a planet other than Earth, the

radiation-equilibrium temperature calculated from the above equation for

Earth would have to be multiplied by the i/4-root of a quantity already

tabulated_ namely, the relative rate of heating _e for that planet. The

relative radiation-equilibrium temperature factors Twe = qe I/4 are:

%
Venus 0.91

Earth i. 00

Mars .55

Jupiter 2.7

A graph of the maximum temperature parameter Twsel/4R1/8 for entry from

decaying orbits is presented in figure 16 as a function of W/CDA (W in

Earth weight). It is noted that the numerical calculations for nonlifting

satellites descending in the Earth's atmosphere, as reported by Kemp and

Riddell (ref. 6) and by Gazley and Masson (ref. 5), agree well with the

analytical variation represented by the present analysis.

The curves for Tws in figure 16 could be applied to other planets

for any given value of _(L/D) by multiplying the ordinate by the

quantity Tw tabulated above Since L/D is a more convenient variable

than 6_-r(L/D), however, a separate plot of the parameter o
TWsel/4/(W/CDAR) 1/8 (which represents the maximum surface temperature th_,t

is experienced during entry for radiation equilibrium at a stagnation

point of radius of curvature R) is presented in figure 17 as a function

of L/D for several planets. The coupling between CD and L/D is taken

as that for the family of half-paraboloids. The others would not be
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greatly different, as maybe seen from the curves in figure 15. Wecan
deduce from figure 17, for example, that a nonlifting body with e = 0.9,
and W/CDAR= i lb ft -3 (e.g., R = i ft and W/CDA= 1 ib ft -2 or R = l0 ft
and W/CDA= i0 ib ft -2) would experience during entry from orbital decay
a maximumstagnation temperature of approximately i000° F for Mars,
2000° F for Venus, 2200° F for Earth, and 6800° F for Jupiter.

Total heat absorbed.- It is emphasized that the effect of lift-drag

ratio on the total heat absorbed Q is quite different from the effect

just discussed on the heating rate q. The use of lift prevents a vehicle

with a given drag coefficient from descending as rapidly as a nonlifting

one, thus leading to lower heating rates at higher altitudes, but the lift

also prolongs the descent markedly. This prolongation dominates over the

reduced rate of heating, to lead to a net increase in total heat absorbed

with increasing L/D. That the total heat absorbed must increase with an

increase in L/D, may be clearly seen from the general equation

Q = CF--_'<S_ _i mV2) (57)
2C D

developed by Allen and Eggers in reference 1. For a given CD, an increase

in L/D does not change the kinetic energy loss, but it does increase the

effective laminar skin-friction coefficient CF' inasmuch as the corre-

sponding increase in altitude results in the heat being taken aboard at

lower Reynolds numbers where CF' is higher.

The quantitative magnitude of the increase in Q with an increase

in L/D may be deduced from equation (39) for Q (which neglects the heat

radiated from the surface). For a given atmosphere (given Pr, _, g, r,

_) and a given size and weight (A, R, W), Q for laminar flow and

cos _ m i is proportional to the quantity

_ i _ui 5sl 2dO"
_DD _D Z112

where _ is a function of L/D and is very insensitive to the lower

limit _ down to which the integration is carried (providing _ is

small). For convenience in evaluating Q from the Z functions, we

select an arbitrary upper limit _i = 0.99. The following values for

Q are obtained for entry from decaying orbits:
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m

Q
J (L/D) _L/D_Earth for _1 = 0.99

-30 -1.0 0.75

-15 -.5 .93

-7.5 -.25 1.09

-3 - .1 1.23

o 0 i .36

3 .1 1.54

7.5 .25 i .90

15 •5 2.53

3o l.o 3.54

For L/D ratios greater than i the asymptotic ZII function can be used

to yield _II = 0"62(_r)i/4_-_ for the heat absorbed between [l = 0.99

and [ _ O. (See appendix C for a more general expression for _II')

The effect of lift-drag ratio on the total convective heat absorbed

(disregarding radiation from the surface) during entry into the earth's

atmosphere from decaying orbits is plotted in figure 18. These curves

are normalized to unity for L/D = 0. In contradistinction to the effect

on q, an increase in L/D by itself is seen to always increase _, and

hence Q, as anticipated from equation (57)- When the coupling between

L/D and CD is considered, an optimum occurs at negative L/D ratios,

near the range -0.7 to -0.5. In view of the fact that these negative

L/D ratios result in high decelerations (fig. ii) they would not be

feasible for a manned entry into the earth's atmosphere; the practical

optimum for a heat-sink vehicle would be near L/D = O.

In figure 19 curves are presented of the total heat absorbed per unit

area during entry into various planets from decaying orbits. Radiation

from the surface is disregarded for these curves. They represent the

family of half-paraboloids, but the other families would not be signifi-

cantly different. As would be expected_ the minimum for each planet occurs

at a negative L/D ratio. For Mars the decelerations are not excessive

for L/D near -0.5 (see fig. ii) but the reduction in total heat absorbed

compared to a nomlifting vehicle is only about i0 percent.

Nonlifting Entry From Deflected Orbits

In the discussions thus far we have considered only the trajectories

resulting from decaying orbits wherein the initial descent angle is

essentially zero. This type of entry leads to relatively shallow angles

of descent with relatively low heating rates, but provides very little

control over the time of entry and the location of impact. One method

commonly envisioned to fix the time of entry, and greatly improve the

accuracy of landing in a predetermined area, is to induce entry by
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suddenly deflecting an orbit so as to enter at someinitial flight path
angle _i. A retrorocket force, for example, or a rocket force applied
in the direction toward the planet center will initiate such entry.
Induced entry of this type, however, results in greater decelerations and
can affect the aerodynamic heating problem either adversely or favorably.

A curve is presented in figure 20(a) showing the effect of initial angle
_i on the maximumdeceleration experienced during entry of nonlifting
vehicles into the earth's atmosphere. Also shownfor comparison is the
approximate limit of humantolerance (for rapid onset with transverse
orientation), and a dotted curve corresponding to the Allen-Eggers theory
for _ = constant = _i. This theory for ui = i can be used for descent
angles greater than about 4° or 5° . Above about -9i = 3° the decelera-
tions exceed humantolerance, so that somemethod of deceleration allevia-
tion, such as provided by lift, or by increasing the value of W/CDA
during descent, would have to be employed for mannedvehicles entering at
these larger angles of descent. The curve of (d_/dt)max in Earth g's
can be applied to any planet by regarding the abscissa scale as being
-(_-r)_i and then multiplying the ordinate scale by (g_-_)_.

The effect of initial angle on maximumlaminar heating rate and on
the total laminar heat absorbed is shownin figure 20(b). As would be
expected, the steeper the descent the greater the heating rate. The total
heat absorbed, however, is less for the steeper descents because the
shorter duration more than compensatesfor the greater laminar heating
rates. Equation (57) shows that this must be the case, since entry at
larger angles results in the heat being taken aboard at lower altitudes
where the laminar skin-friction coefficients are small. If the flow were
turbulent the corresponding reduction in CF' and hence in _ with an
increase in descent angle would be less. The curves in figure 20(b)
approach the curves developed from the ZI function corresponding to the
solution of Allen and Eggers (see eqs. (C3) and (C4) of appendix C). In
order to be consistent with the other values of Q representing the heat
absorbed from [ = 0.99 to _ _ 0, a calculated factor 0.84 has been applied
to equation (C4) which represents the heat absorbed from [ = i to _ = O.
It is seen from figure 20(b) that the Allen-Eggers solution for heat
transfer in this case (_i = i) is quite accurate for descent angles greater
than about 2° . The curves in fi_ire 20(b) can be applied to other planets
by regarding the abscissa as a scale for the quantity -(_)_i _

In the figure 20(c) a curve is presented showing the strong influence
of initial descent angle on entry range for Earth. Twoincremental ranges
are shown: a solid line curve for the distance between the point where

= 0.995 and the impact point ([ = 0), and a dashed-line curve for the
distance between [ = 0.99 and impact. From the slope of the solid-line
curve we obtain the lower curve shownof average miss distance for an

error in _i of 0.5 °. It is to be remembered that this miss distance

curve does not consider the essentially dragless portion of a deflected

orbit from the point of orbit deflection to the point where [ = 0.995,

and hence it is indicative of only the entry portion of the practical
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problem of estimating miss distance. The curve illustrates, however, the
advantage of using a small initial descent angle in order to greatly
improve the ability to determine impact point.

A further contribution to miss distance which can be studied with
the present equations is that due to atmospheric variations in temperature
with either season or latitude Equation (28) showsthat As-(_-_)-i
so that a ±15-percent seasonal variation in temperature would correspond
to a _7-percent variation in _-_ and in As. For small initial angles,
say 9i = -l°, the range during entry from [ = 0.995 to impact is roughly
i000 miles according to figure 20(c), and hence the impact point would
vary ±70 miles. The entry range would be greater in summerthan in winter.

A graph of the Reynolds numberper foot at peak heating for nonlifting
entry into the earth's atmosphere with Vi = i is presented in figure 21
for -9i = 0°, 5° , i0°, 20o, 40o, and 90° . The -9i = 0° curve is based
on the Z function of figure 4(a). All others are based on the ZI
function corresponding to the Allen-Eggers solution. Entry at other values
of Vi, according to this solution, results in values of Re proportional
to Vi.

Lifting Entry From Deflected Orbits

If a vehicle with L/D > 0 enters the atmosphere from a deflected
orbit at a sufficiently large initial angle of descent, the entry trajec-
tory is comprised of one or more skips. This is to be expected on physical
grounds and is evident from the Z functions already presented in fig-
ures 6(b) to 6(e). During the first portion of descent, a vehicle under-
going a sizable skip will, at the bottom of the skip, decelerate and take
on heat at a lower altitude than a vehicle at the samevelocity which
glides in smoothly from a decaying orbit (_i = 0). For large initial
angles of descent_ then, wemight expect a skipping vehicle entering from
a deflected orbit to experience greater decelerations, higher heating
rates, and shorter entry range than a gliding vehicle entering from a
decaying orbit. On the other hand_ since the skipping vehicle takes on
most of its heat at a lower altitude (where the skin-friction coefficients
are lower) we would expect from equation (57) that the skipping vehicle
would absorb less total heat during entry than the orbiting-decay vehicle.
Calculations from the Z functions of figures 6(b) to 6(e) showthese
various expectations to be the case for initial descent angles -(_i)Eart h
greater than about i °. This is illustrated in figure 22(a) for maximum
laminar heating rate, in figure 22(b) for total laminar heat absorbed, and
in figure 22(c) for entry range. The expected increase in deceleration is
already evident from figures 6(b) to 6(e) which show 30 UZ ~ du/dt as the
ordinate.

If a vehicle with L/D > 0 enters the atmosphere from a deflected
orbit at a very small initial angle of descent, so that the trajectory
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might be described more appropriately as a rippling descent rather than
a skipping one_then the peak deceleration and maximumheating rates can
actually be slightly smaller than for the samevehicle gliding in from
a decaying orbit. What Happensin such cases maybe seen, for example,

= 0° Thein figure 6(c) by comparing the curves for -_i i ° and -_i,= .
rippling entry (-_i = i°) has one maximumon each side of the maximum
for -_i = O° representing orbital-decay entry. These two maximain
deceleration for -_i = l° are slightly less than the single maximumfor
-_i = 0°" A similar situation can exist for the maximain heating rate.
As a result, the curves in figure 22(a) for the dimensionless maximum
heating rate q--maxfor lifting vehicles entering from deflected orbits
show slight waviness and sometimesslight reductions below the values for
-_i = 0 whenthe initial descent angle is less than about i/2 ° to i °.
Consequently, we can say that, in principle, a rippling-type descent from
a deflected orbit can have lower maximumheating rates than a gliding
descent, but for practical purposes, there is no significant difference
between the two.

Composite Entry

It maybe desirable to combine lifting and nonlifting entry in order
to achieve someadvantages of both types. For landing maneuverability it
obviously is advantageous to employ a lifting vehicle. The total heat
absorbed by a lifting vehicle, however, is muchhigher than for a nonlift-
ing vehicle (fig. 18). The optimum use of aerodynamic lift reduces the
maximumheating rate only to about one-half that of a nonlifting vehicle
of the sane W/A. Nonlifting vehicles can more easily be constructed
with much lighter W/A ratios by employing, for example, a large, light
drag device (for example, a parackute). The larger the device, the smaller
is the heating rate (q ~ i/ _A-[ ~ _-s_), the smaller the entry Reynolds
numbers (Re ~ (W/CDA)Z - _-I), and the better the possibilities are of
maintaining laminar flow. Nonlifting vehicles with shuttlecock stability
are advantageousalso from the viewpoint of minimumcontrol requirements
during entry. Hence, an evident composite type of entry, _ich combines
someof the desirable features of lifting and nonlifting trajectories,
would be to enter first without lift but with a small W/CDA provided
by a drag device; then, when the velocity is reduced to a certain value
qb the device is jettisoned or retracted, leaving a lifting vehicle of
larger W/CDA for the remainder of the descent.

A practical compromiseis required in selecting [b, because the
drag device should be jettisoned as soon as possible from the viewpoint
of achieving _ximum maneuvering range, but as late as possible from the
viev_point of achieving major reductions in heating rate. For the initial
nonlifting portion of descent let the drag-weight par_mter be (W/CDA)o

and the Z function be Zo. For the subsequent portion let the corre-
sponding quantities be (W/LDA)I and Zm. Since the altitude y and the

I
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angle of descent _ are continuous at the break velocity

two conditions from equations (14) and (17)

_b, we have

(58)

for determining the initial conditions ZI i m ZI b and Z1i' m Zlb' for

the second portion of descent. Hence the Zl function can be determined

approximately from equation (C13) of appendix C by substituting _i = _b,

Z i = Z1b, sin _i = q°b, and cos _ = i. The maximum heating rate occurs

near the bottom of the first dip after the break, and can be obtained

from equation (C24) in appendix C with the same substitutions. The total

heat absorbed in this dip can be obtained from equation (C25).

As an example let us consider the case of a large drag device

((W/CDA)I >> (W/CDA)o) jettisoned at a velocity U--b during entry from

a decaying orbit. In order to minimize the peak heating after jettisoning,

as well as minimize the total heat absorbed during the skip, a value

L/D _ 0.7 is selected. Curves showing the resulting values for maximum

heating rate _m after jettisoning, and total heat absorbed El during

the first skip, are presented in figure 23 as a function of the break

velocity _b" We see that a large drag device carried down to _b = 0.4,

for example, would have a maximum heating rate about 1/4 of that for the

same vehicle with no drag device.

It may be noted that the deceleration history for a drag device

jettisoned at _b = 0.4, for example, is essentially the same as the

acceleration history investigated in the human centrifuge tests of refer-

ence 18. The select individuals for these centrifuge tests did not

blackout (or grayout, or even get dizzy) during the runs. They were able

to perform continually simple dual control operations even when the accel-

eration dropped suddenly from about 8g to about 2g.

Comparison of Several Types of Entry With _i = i

It is interesting to compare the relative magnitude of aerodynamic

heating for the several types of entry discussed. The dimensionless

maximum heating rate _m and the dimensionless total heat absorbed

are used for this comparison. They would be proportional to the actual
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heating rate and the total heat absorbed for vehicles of the samesize
and W/CDA. The table which follows summarizesthese quantities for
seven different types of entry_ all starting with _i = I.

i

- Q

Type of entry L/D qms_x for _l = 0.99

Near optimum glide, for

minimum qmax (_i = 0)

Near optimum ripple for

minimum qmax ('_i = 0"5°)

Near optimum glide, for

minimum Q(gi = 0)

Near optimum first skip

for minimum Q

0.7 0.084 3.0

•7 .083 2.9

-. 5 .78 •93

•7 .15(-_i : 2° ) .90

Nonlifting (_i = O) 0 .22 1.4

Nonlifting, from deflected

orbit with "_i = 2o

0 .27 •93

Composite, large drag device

jettisoned at u--b = 0.4

0 for _ > 0.4 .02 .16

0.7 for _ _ 0.4

In comparing these values it should be remembered that the actual quanti-

ties of interest for a given W/A are clmax/ _f_ and _/ C_, and that

nonlifting vehicles are placed at a small disadvantage in the table

because they presumably can be designed with somewhat higher values of

CD than lifting vehicles. It is noted that the total heat absorbed in
the case of the skip vehicle, corresponds only to the first skip. Pre-

sumably this is all that should be considered if the vehicle is designed,

as suggested by Ferri (ref. 7), to radiate essentially all of the heat

absorbed after each skip.

Atmosphere Braking

During entry of a planet's atmosphere from space at near escape

velocity, possibly severe deceleration and heating problems can occur

during the process of passing through an outer segment of the atmosphere.

The closer a pass is made to a planet surface, the greater is the braking

action, the greater the deceleration, and the greater the rate of aero-

dynamic heating. The Z functions for four different entry histories of

nonlifting vehicles starting with escape velocity (_i = 1.4) have already



NACATN 4276 41

been presented in figure 7. These functions apply to any planet. They
are based on the assumption that after the initial pass no further control
of the vehicle is exercised.

Entry (a) is initiated with 30(_Z)max = 0.46 during the first pass
(0.46 g maximumdeceleration for earth) and corresponds to a dimensionless
peak heating rate of q--max= 0.24 at _ = 1.38. The successive peaks
correspond to q--maxprogressively less, while the seventh pass, which
starts from _ = 1.08 and completes the entry, corresponds to q--max= 0.20.
As might be expected this is not far from the value 0.22 corresponding to
orbital decay from _i = i with L/D = 0. Since q--maxis a measure of
the maximumtemperature experienced by a radiation-cooled vehicle, it
follows that entry of such a vehicle could be completed on the seventh
pass, without the temperature during any of the atmosphere braking passes
exceeding appreciably that experienced during orbital decay.

Entry (b) in figure 7 is initiated with 30(_Z)max = 1.65 in the first
pass during which an amount of heat is absorbed corresponding to _ = 1.5.
This heat could be radiated to space before the second pass is madein
which an additional amount _ = 1.4 is absorbed. The third pass starts
from _ = 1.09 and completes the entry with _ = 1.7. These values are
not far from the value _ = 1.4 corresponding to orbital decay with
L/D = 0. Since _ is a measure of the total heat absorbed by a heat-
sink vehicle, it follows that such a vehicle could complete an entry on
the third pass without absorbing muchmore heat during each of the two
atmosphere braking passes than that absorbed during orbital decay.

Entries (c) and (d) in figure 7 are completed in a single pass and
both lose an amountof kinetic energy (_i/2)m(l.4w_r)2 = mgr. They absorb
a quantity of heat corresponding to Q = 2.9 and Q = 2.1, respectively,
and experience maximumheating rates corresponding to _max= 0.58 and
_max= 0.73, respectively. The total laminar heat absorbed by (d) is
less than (c), even though the maximumheating rate is greater, because
entry (d) corresponds to a closer pass to the planet surface for which
the heat is taken aboard, on the average, at lower altitudes where the
friction coefficients are lower (see eq. (57)).

In addition to the four Z functions just discussed, a numberof
Z functions (not presented) have been computedfor lifting vehicles
undergoing single atmosphere braking passes in which the entering velocity
is _i and the exit velocity is _ex. Results are presented in figure 24
for _i = 1.4 and in figure 25 for _i = 1.2. In each figure curves are
presented for the maximumvalue of horizontal deceleration 30(_Z)max, the
dimensionless maximumlaminar heating rate _max, and the dimensiomless
laminar heat absorbed Q during the single pass. The curves are labeled
as to the L/D values corresponding to earth; they also can be applied
to other planets by recalling that a given value of L/D on Earth is
equivalent to a value (_r)¢ -l_ times as muchon another planet.
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An interesting feature of these results for single atmospherebrakings
is that for a given loss in kinetic energy (given _ex), they exhibit the
opposite variation with L/D from that previously found for orbital
decay. Thus, an increase in L/D decreases the maximumdeceleration for
orbital decay but increases it for atmospherebraking; an increase in
L/D decreases the heating rate q--maxfor orbital decay but increases it
for atmospherebraking; an increase in L/D increases the heat absorbed
Q for orbital decay but decreases it for atmospherebraking. From a
mathematical viewpoint the reason for this contrasting behavior is that
the gravity minus centrifugal force term (i - [e)_Z in the basic differ-
ential equation changesalgebraic sign at [ = i. From a physical view-
point, the effect of L/D on atmosphere braking can be understood by

noting that in order to lose the same amount of kinetic energy_ a lifting

vehicle must pass closer to the surface than a nonlifting one. Hence at

the lower altitude the deceleration and rate of heating of the lifting

vehicle are greater, while the friction coefficients are smaller and hence

the heat absorbed for a given loss in kinetic energy is smaller (see

eq.

A plot of the maximum surface temperature parameter

TWs_I/4/(W/CDAR)I/8 as a function of the maximum deceleration in Earth

gts is presented in figure 26 for atmosphere braking in various planets

with L/D : O. These curves are for a single pass starting with [i = 1.4.

It is seen that in the earth's atmosphere, for example, the maximum decel-

eration that can be experienced in a single pass and still enable the

vehicle to exit from the atmosphere at some velocity _ex > i, is about

3.5g. If the nonlifting vehicle attempts to decelerate more than this

by passing closer to the surface, then before it exits from the atmosphere,

the velocity is reduced to [ = i at some point within the atmosphere and

the vehicle completes entry in a single pass experiencing at least 7.2g

deceleration in the process. Any pass still closer to the surface only

increases further the maximum deceleration and temperature. When the

maximum deceleration during a single pass jumps discontinuously from 3.5g

to 7.2g, the corresponding maximum temperature does not jump because the

maximum temperature already has been experienced before _ = i was reached.

The limiting maximum deceleration for atmosphere braking in Mars is seen

to be much less (0.7 Earth g), and for Jupiter much more than for Earth.

A companion plot to figure 26_ only for the laminar heat absorbed

per unit area in a single pass, is presented in figure 27. These curves

also are for L/D = 0 and _i = 1.4. In this case, the heat absorbed

increases discontinuously when the maximum deceleration increases discon-

tinuously (from 3.5g to 7.2g for Earth) because of the additional loss

in kinetic energy. Any pass still closer to the surface increases the

deceleration but decreases the laminar heat absorbed. This decrease

exists because, for a given loss in kinetic energy, any pass t_ing on

its heat at lower altitudes _ll have smaller laminar friction coeffi-

cients, and hence less total heat absorbed (see eq. (57)).
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CONCLUDINGREMARKS

An approximate analytical solution for the motion and aerodynamic
heating of a lifting vehicle entering a planetary atmosphere has been
obtained by disregarding two relatively small terms in the complete motion
equations, and then introducing a mathematical transformation which reduces
the pair of motion equations to a single, ordinary, non_linear differential
equation. Relatively few solutions to this differential equation provide
quite general results inasmuchas the basic equation is independent of
the physical characteristics of a vehicle, as well as independent of the
sea-level characteristics of an atmosphere. The solutions apply to any
exponential planetary atmosphere.

Certain asymptotic solutions in closed form result from a process of
truncating various combinations of terms from the basic nonlinear differ-
ential equation. The aggregate of terms represents vertical acceleration,
vertical componentof drag force, gravity force, centrifugal force, and
aerodynamic lift force. This truncation procedure yields an asymptotic
solution for ballistic vehicles entering at relatively steep angles of
descent (which solution is identical to that of Allen and Eggers), an
asymptotic solution for glide vehicles of relatively large lift-drag ratio,
and a solution for skip vehicles.

Comparison of the present solution for an idealized exponential
atmosphere with digital computing-machine results for a standard atmos-
phere reveals differences the order of about ±i0 percent. These rela-
tively small differences are due primarily to the variations in atmospheric
temperature with altitude in the standard atmosphere. The present analytic
solution enables corrections readily to be madein order to yield results
applicable to any standard atmosphere, or to an atmosphere which has
variations in temperature with season or with latitude.

Maximumdeceleration during entry into an exponential atmosphere
from a decaying orbit does not depend on the vehicle weight, shape, or
dimensions; it occurs at a velocity of about 0.4 of orbital velocity,
and is muchless for lift-drag ratios as small as a few tenths than for
a lift-drag ratio of zero. Even for nomlifting vehicles, though, the
decelerations are within humantolerance for Earth and Venus_and far
below for Mars. Mannedentry into Jupiter would require a lifting vehicle
in order to avoid excessive decelerations.

For vehicles entering from a decaying orbit with aerodyn_uic lift,
the maximumheating rate depends strongly on the vehicle weight, shape,
and dimensions through the parameter W/CDA;maximumheating occurs st a
velocity of about 0.8 of orbital velocity, and, for any given loading
W/A, is minimumfor entry at CLmax. This corresponds for commonshapes
to optimum L/D ratios between about 0.5 and 1.0. Becauseof the
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coupling between CD and L/D for any aerodynamic shape, the use of a

near optimum L/D can reduce the maximum heating rate to no more than

about one-half that for a nonlifting vehicle.

The laminar heating rate varies directly as _C-_; hence, by using

a drag device to increase markedly CDA , such as a drag parachute or flare,

much larger reductions in heating rate are possible than through the use

of a trimmed lifting vehicle.

The total heat absorbed during entry from a decaying orbit increases

rapidly with lift-drag ratio for vehicles with positive lift. It is a

minimum for lift-drag ratios near about -0.5, but these negative lifts

result in excessive decelerations for manned entry into the earth's

atmosphere] hence the practical optimum for minimizing the total heat

absorbed in orbital-decay entry of a manned vehicle is near a lift-drag

ratio of zero. The total laminar heat absorbed, like the laminar heating

varies directly as _-_.rate_

By inducing entry at a sizable initial angle of descent, the total

heat absorbed for laminar convection can be reduced substantially. The

limit of human tolerance to deceleration stress is closely approached for

nonlifting vehicles entering the earth's atmosphere at an initial descent

angle of about 3°_ under which conditions the total heat absorbed is 0.6

of that for a decaying orbit having zero initial angle of descent, while

the decelerations and the maximum heating rate are correspondingly

increased. However, if a vehicle with small aerodynamic lift (say,

L/D _ 0.7, approximately) enters with a small initial angle, the trajectory

is a rippling descent which can have a slightly lower maximum heating rate

as well as smaller total heat absorbed than for gliding entry from a

decaying orbit.

The total heat absorbed during the first skip of a lifting vehicle

entering at a sizable initial angle of descent, is essentially independent

of both the angle of descent and the velocity of exit from the skip. It

is a minimum for entry at CLmax (lift-drag ratios near 0.7). For a given

W/CD A, this minimum total heat absorbed during the first skip is roughly

the same as that absorbed during the entry of a nonlifting vehicle enter-

ing at an initial angle of descent of about 2° .

In the process of atmosphere braking for stepwise slowing a space

vehicle from near escape veloclty to circular orbital velocity_ the

effects of L/D on peak deceleration, on maximum heating rate, and on

total heat absorbed are the opposite to the corresponding effects in the

process of orbital-decay entry. For example, an increase in L/D with a

given CD increases the maximum heating rate in atmosphere braking, but

decreases it in orbital decay. For nonlifting vehicles starting with

escape velocity and employing atmosphere braking, entry to a planet sur-

face can be completed on the third pass without the tctal heat absorbed
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in any pass exceeding that absorbed for orbital decay, and can be
completed on the seventh pass without the maximumrate of heatimg exceed-
ing that for orbital decay.

AmesAeronautical Laboratory
National Advisory Committeefor Aeronautics

Moffett Field, Calif., Apr. 9, 1958
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APPENDIX A

CHECK ON APPROXIMATIONS MADE IN ANALYSIS

The basic approximation (a) of the analysis, as represented by

equation (8), can be expressed fairly simply in terms of the transformed

variable Z and the angle of descent

Idr/rl b(dy/dt)l sin
= = <<i

Iduhl Ir(d /dt) I z

Inasmuch as Z/_ ~ p_, this shows that approximation (a) cannot be valid

at very high altitudes which are represented by a small neighborhood near

= _i and Z = O. In figures 28(a) and 28(b), curves of the ratio

(dr/r)/(du/u) are shown for lifting entry into the earth's atmosphere

from decaying orbits and for nonlifting entry from deflected orbits with

various initial angles qi" It is evident that in the regions near peak
heating (_ _ 0.8) and near peak deceleration (_ _ 0.3 to 0.5) the basic

approximation should introduce errors the order of only i percent. As a

vehicle initially enters the atmosphere, however, the decelerations are

very small and the errors introduced are larger. As a general rule,

approximation (a) is valid for engineering calculations once the air

drag has reduced the velocity by about one-half of one percent (see

appendix B). Approximation (b), that (L/D)Itan ql<< i likewise is a
valid one for heat transfer and deceleration calculations of vehicles

with zero or positive lift entering from decaying orbits. As figure 28(c)

illustrates, approximation (b) may result in substantial errors near

maximum deceleration for vehicles having negative lift, but still results

in reasonably small errors near peak heating of such vehicles.
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APPENDIX B

MATCHING PRESENT SOLUTION TO KEPLERIAN ELLIPSE

Let us assume that a retrorocket force, or some other force, has

deflected an orbiting vehicle into a new Keplerian ellipse which, in the

absence of drag, would intersect the planet surface at some angle _o"
A "zeroth order" approximation would be to use this angle in the present

solution as the initial angle _i for the entry. This would be suffi-

ciently accurate for descent angles greater than a few degrees, but for

very small angles of descent a more accurate matching of the present

solution to the Keplerian ellipse may be desirable.

Since the present solution assumes that ldr/rl<<ldu/ul whereas the

conservation of angular momentum requires that dr/r = -du/u outside

the atmosphere, it seems reasonable to select the point of matching where

the ratio (dr/r)/(du/u) is some value less than unity. Let the descent

angle at the point of matching be qgm, and the velocity be u--m. Let us

confine our attention to a small region near matching, where the density

is very low, the aerodynamic forces are very small, and the flight path

is only slightly curved. We represent the Z function in this region

by the approximation Z I from equation (40) for constant angle of

descent, namely,

Zm _ _-_ _msin q_mZn(_m/_i)

Since _m is only slightly less than _i we approximate Zn([Im/_i) by

(qm - _i)/_i • Hence from equation (22), it follows that at the matching

point the ratio rm of terms discarded to terms retained is

dr/r sin qm ~

For Earth _r = 900, so that 9m = I at _m = 0-999 _i, _m = 0.2 at

Um = 0.995 _i, and 9m = 0.i at _m = 0.99 _i" Thus, it would be reason-

able to match the present solution with a Keplerian ellipse at some

velocity in the range, say, _m = 0.995 _i to qm = 0.99 _i" The density

Pm at the matching altitude (from the defining equation (].4) for Z

and from equation (BI)) can be determined from

_7/_ pm

2(m/CDA)
- Zm _'_ (_i - _m)( -sin qo) (B2)

(-sinPm : _q
(B3)
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or, from Pm we can determine the altitude Ym and hence the corre-
sponding value of _m from the Keplerian ellipse at this altitude. The
value of _m so determined would be the value of _i which closely
matches the present solution for the entry motion.

An equivalent way of matching would be to select first arbitrarily
various altitudes Yl, Y2_ Y3, . . and corresponding densities
Pl, P2, P_, .... From the Keplerian ellipse the slightly different
angles _i_ _2, _s, . could be determined, and by substitution of
these into equation iB3) in place of _o, the respective values (m/CDA)I,
(m/CDA)2, . which would bring about proper matching for a given
value of _m (say, 0.i) could be computed. Interpolation would yield
the matching angle q_n,and the matching altitude Ym for any desired
value of m/CDA.
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APPENDIX C

DEVELOPMENT OF SOME APPROXIMATE SOLUTIONS

The first approximate solution is that for entry of a non_lifting

vehicle along a spiral path which makes a constant angle _ with respect

to the local horizontal direction. For this first special case we desig-

nate the Z function by ZI_ and see from the right members of equa-

tion (19) that

(sin _) : 0 : _ZI" _ sin
d_

or, after one integration,

ZI' = _7 sin _ Zn _ + constant (Cl)

The integration constant can be evaluated in terms of the initial veloc-

ity _i and the angle _, to yield after one more integration for entry

from high altitudes (Zi = 0),

Z I [ CDAP'-o -Sy
: Zn- :- e (C2)

__-_ sin _ _i 2m_ sin

from which it follows that the dimensionless l_uinar heating rate

5/2 i/2

_I _ 5 Z I has a maximum value

3 lJ4j
lima x : 0.247 _i (Dr) sin(-_) (c3)

and the dimensionless total heat absorbed from _ = _i to [ : 0 is

evaluated by noting that the integral of equation (39b) is proportional

to F(I/2) = _.

(QI) : _<c_-s_)e _7 _ (C4)

(13r) 1/44 sin(-_)

This solution for Z I corresponds to setting the left menders of

equation (21) to zero. In order that the right members of equation (21a)

also vanish, we see from equation (C2) that this special solution can be

realized in two ways: (i) by maintaining a true spiral path through pro-

gramming the lift with velocity in the very special way such that at all

points

= (1 - _2)°os _ (C5)

h _2(_r)sin _ Zn(_/_i)
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or (2) by entering with a non!ifting vehicle along such a steep path that
the gravity forces minus the centrifugal forces are negligible compared
to the vertical componentof drag force (this yields essentially a
straight-line trajectory). Case (I) of spiral trajectories with pro-
grammedlift, is not easily realized in practice, but case (2) represents
exactly the physical situation considered by Allen amdEggers (ref. i)
for their solution to the problem of ballistic entry. Hence, it should
not be surprising that equation (C2) is identical to their solution.
This solution for nonlifting vehicles at constant _ does not depart
significantly from the complete solutions near peak heating (_/_i _ 0.8)
except for initial descent angles less than a few degrees, and near maxi-
mumdeceleration _/_i _ 0.4 to 0.6) except for initial descent angles
less than about 5_.

As a second specia_ case, we consider smoothly gliding, hypersonic
flight (_ near i) with a large L/D and at sufficiently small descent
angles that cos _ _ i and sin _ _ _<<L/D. Under these conditions the
left-hand terms of equation (21a) involving the normal deceleration and
the vertical componentof drag force can be disregarded. The right mem-

bers yield for the special function ZII representing balance be_Teen

gravity, centrifugal, and lift forces,

_2

ZI I : i - u (C6)

 4V7 (L/D)

The flight-path angle is obtained from equation (17) by differentiating

equation (C6)

2

This particular solution is the same as the solution for gliding flight

orginally given by S_Luger (refs. 2 and 3) for which the aerodynamic heat-

ing problems have been studied by Eggers, Allen, and Neice (ref. 4).

This special solution is quite good for L/D ratios greater than about i

(for Earth) and hence is adequate for most glide vehicle analysis. It

cannot be applied, however, to entries with other than zero initial angle,

inasmuch as extremely small initial angles of descent will result in a

skipping trajectory for which the vertical acceleration term is not small

compared to the lift force. For this gliding solution ZII the maximum

- = (_5/2Zz/2heating rate proportional to qmax )max occurs at _ = _7_
with

2

(qII)ma x : 1/4 (C8)
3_/_ (_r) _7 _

the dimensionless function proportional to the total heat absorbed is



NACATN 4276 51

-- i/4__f _i _2d_ (_r) 1/4

QII = (_r) _Dgo ___2 - 2 _DL--(sin-l_ i - GiJl-_i 2)

(C9)

and the range function is

AsII L£ Ui _ d_ L 1

r - D Jo 1 - _2 - 2D Zn 1 - _i 2
(clo)

as obtained in reference 4.

As a third special case, we consider entry with lift along a trajec-

tory wherein the gravity minus centrifugal force is relatively small (see

eq. (21a)). A skip vehicle, for example, would fall in this category.

In this case the flight path is determined primarily by a balance between

the normal acceleration term _Z", the lift term _r_(L/D)cos_, and the

vertical drag component. The trajectory is_ by assumption, influenced

only secondarily by the gravity minus centrifugal force term

(I - _2)cos4_/(_Z); hence we may render the basic differential equation

linear by supposing that Z in the denominator of this nonlinear term

be approximated a priori by some Z function obtained either by neglect-

ing this nonlinear term or obtained in some other way such as by expand-

ing Z about _i" By writing cos _ as the "average" value of cos

for the flight path according to the theorem of the mean, we have, after

one quadrature,

L i- _2 Ld_dZ _Z _ cos4 _ _2Z-- d_ - cosset[ Zn _i + constant (CII)
_i

at _ : Ui; equation (17) shows that (dZ/d_) - (Z/F) = _-_ sin 9i hence

the descent angle is given by

_C_ (sin (p - sin qDi) = cos4_
i _2Z

L

- J%7

(cl2)

and the Z function is obtained by solving the first-order differential

equation (CII), noting that i/_ is an integrating factor,

_Z=Zi +cos4_d_ F _ (l-qa)d_+_ sin qoiZn ___coss_(DL_) _ in2 __
_i i u Jqi _2Z u i 2 _i

(C13)
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By disregarding the gravity minus centrifugal force integral, we obtain
a special function ZII I representing balance between normal acceleration,
vertical drag component, and lift force,

Zlll Zi
+ _'_ sin cPi_n_i 2 Zn2 (el4)

and

u
sin _ = sin q9i - cosS_ In _----

ui
(cl5)

These last two equations for L/D = 0 reduce to equation (C2). If

desired, we could substitute ZIII (or some other initial estimate of Z)

into the denominator of the integrand in equation (C13), thus obtaining

a correction term for the gravity minus centrifugal force term. The suc-

cess of such a method would depend upon the accuracy and simplicity of

the initial estimate.

To illustrate one application of the special solution ZII I given

by equation (C14), we consider the first skip only of a lifting vehicle

entering the atmosphere at a small angle _i (cos _i z i) and at orbital

velocity (_i = i). The first skip is generally the most severe from the

heat-transfer viewpoint. We have for Zi = O,

Zlll -_<_i_n _ - L_n2__ 2/) (C16)

which can be substituted into the integrand of equation (C13) to yield an

expression for the gravity minus centrifugal force term. We notice first,

though, that by definition (ZIII/_) ~ p_ returns to its small initial

value Zi whenever the vehicle returns to the initial altitude O_i. At

the end of the first skip the velocity is reduced to some value Ullle
such that

2_ i

Zn( nl)e:

in accordance with the results of reference 4. This is the velocity at

the end of the dip. Since we are considering small angles only_

-2mi/(n/D) _ i - _iiie , and we may substitute Zn u = u - i in equa-

tion (C16) for the purpose of evaluating the double integral of equa-

tion (C13) representing the gravity minus centrifugal forces. This

yields a new Z function

ZI___V= (i - _)2 ZIII
+ (el7)

4_r9i/- J
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The velocity at the end of the dip is given by

(Cl8)
Zn _e = (L/D) + (i/2_r_ i)

Since

disregarded.

_r = 900 for Earth, the correction term i/(4_r_i) can often be

The path angle is obtained from equation (C15)

= _i - _Zn

so we see that

(Cl9)

i

1 2(L/O)_ i (C20)L

_e = _i - _ Zn W e = -_i i + i

2(L/D) r i

If 2(L/D)_r_i >> i these equations reduce to results previously obtained

by Eggers, Allen, and Neice (ref. 4). In particular, for relatively

large values of (L/D)_i, the angle leaving the dip is equal but opposite

to the initial angle _i of entry, as noted in reference 4. After a

skip, a period of weightlessness follows at an essentially constant

velocity _e under conditions where the vertical acceleration

(dv/dt) = g - (_e2/r) is constant; hence the duration of weightlessness

At = 2Ve/(dv/dt) is

_t = 2_e (_e) (C21)

g(l - _e 2)

After this period, a second entry occurs at nearly the same angle as the

first entry, only at the reduced velocity We. The maximum laminar-

heating rate occurs near, but not at the bottom of the dip (_ = 0) at

which point the velocity _m is given by Zn _m = _i/(L/D). By substi-

tuting this into equation (C16) the approximate maximum laminar heating

rate is then represented by

= (UmS/e i/2 i/4 LI'"-_ (-_i)_m -- Zm ) = (_r) e (C22)
4 /D

1/4
(_r) (-flo i )

for -_i << _D

An interesting result concerns the total heat absorbed in a single

skip starting from satellite velocity (_i = i). The total heat absorbed

is obtained from equation (39) together with
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z s12 Jff_e

By employing the sameapproximation Zn _ _ -i + _ the integral can be

evaluated.

(_r)l/4_g_

This is essentially independent of 9i, since mil(LID) for many skip

vehicles would be small.

_ J7 _ for -mi << _D

Although the maximum heating rate in a skip is proportional to the initial

angle of descent 9i_ the total heat absorbed is essentially independent

of both the initial angle _i and the exit velocity We of the skip.

Since Q ~ Q/C_, we see that Q ~ 1/_, which means that the least heat

is absorbed by skipping at CLmax" For inclined flat surfaces in hyper-

sonic flow, simple Newtonian theory yields CLm_< = 0.77 at an angle of

attack of 55 ° , at which angle L/D = 0.71. Hence

(Q)min Q : _ _/(_r)li4_--_ : 0.96

This value is compared elsewhere in the DISCUSSION with corresponding

values of Q for other types of entry.

If a skip vehicle does not enter initially at orbital velocity_ but

at some different value _i, then the corresponding equations with gravity

and centrifugal forces neglected indicate the bottom of the dip to be at

At this point the heatinga velocity gm given by Zn(_m/ffi) : q_il(LID)"

rate is represented by

s_ i

q_m : (_r)ll4_iseLID

JZf/D

The exit of the skip occurs at a velocity _e given by

Zn(_e/_ i) = 2_i/(L/D)

The dimensionless total heat absorbed is approximately

(c2_)

B
_i e

(_r) I/4_LTD

(c25)
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APPENDIX D

INTEGRATION OF BASIC NONLINEAR EQUATION

Many numerical methods could be used to compute stepwise a Z func-

tion from a nonlinear equation such as

--2
Z i -u L

_Z" - Z' + - cos4q_ - _ _ cosSq0 (Dla)nZ

where Z' - _ :_-r sin _. A study has not been made of the best way to

integrate such an equation, or of whether or not an alternate form of this

equation, such as

:7 -i cos  -j' 5cos  (Dlb)

where F m Z/_ and _F' :_ sin _, may be preferable for purposes of

integration. The particular method e_loyed, while probably not extremely

accurate, is simple in the sense that it involves merely the repetition

of a large number of identical operations. Suppose we know at some ini-

tial point in the values of Zn and Zn'. Then from the differential

equation we have for the second derivative (with cos _ set equal to

unity for purposes of simplicity in illustrating the method),

Zn,, i <Z Zn i - in 2 L)=_nn n' - _n + _nZn _f_ (D2 )

and for the third derivative

Zn'" I [_-_<Z Z_n_ i - [ne Zn' i + in2 1: -- n' (D3)
U--n U--n Zn 2 _n2Zn

Hence a Taylor expansion for

yields
Zn+ I and Zn+ I' at the next point U--n+I

2r _
Zn+1 : Zn + Zn'Z_ + Zn" <fk_; + Zn,,,

2 6

Zn+l' = Zn' + Zn"Au + Zn'" /A_;2
2
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while the above equations (D2) and (D3) yield Zn+1" and Zn+1"' when n
is replaced by n+l in the formulas. Thus the process can be continued.
For most cases the Z functions are fairly smooth, and the inclusion
of Z'" is unnecessary in the above procedure if sufficiently small 2_
are used. For the present calculations Z"' was omitted; zh_= 0.001 was
employed for _i = i, and 2_ = 0.002 for qi = 1.4 and _i = 1.2. For skip
vehicles, the Z function can vary quite rapidly and the inclusion
of Z'" presumably would enable larger increments 2_ to be used.

This particular procedure requires a knowledge of nonzero values
Zo and Zo' at someinitial point U-o. Hencethe first step is taken
analytically. For decaying orbits an analytical representation in the
vicinity of _ _ i, where (i - [2)/_ = 2(i - [), is

Zo = 2_ (i - _o)312 (D4)

Zo' = -J-g(i - [o)_I_ (95)

since these yield Zo" = 2(1 - _o)/Zo and correspond to values of both

Zo' and Zo/_o small compared to Zo" (see eq. (DI)). Equations (D4)

and (D5) would apply to a lifting vehicle provided (i - To) is selected

small enough so that wf_ _ << (I - _o) -I12 If the L/D ratio is
D

large, we can use the ZII function to obtain

i - _o 2 (D6)
Zo = j_ (LID)_o

i +[o 2

Zo' = - j-_ (T,/D)_o 2 (D7)

For re-entrywith an initial angle _i at initial velocity ui we can

use the ZII I function for the first step,

u

Zo = _-r [o sin _iZn [i c°sS_i <L) Zn2_ii]2 (Ds)

Z o

Zo' = _ sln _i + ----- (D9)
u o
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(a) Maximum laminar heating rate.

Figure 22.- Effect of initial angle of entry on laminar aerodynamic

heating and range of lifting vehicles.
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